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2 CHAPTER 1

THE DEVELOPMENT OF SEQUENCE ANALYSIS METHODS has depended on the contributions of
many individuals from varied scientific backgrounds. This chapter provides a brief histor-
ical account of the more significant advances that have taken place, as well as an overview
of the chapters of this book. Because many contributors cannot be mentioned due to space
constraints, additional references to earlier and current reference books, articles, reviews,
and journals provide a broader view of the field and are included in the reference lists to
this chapter.

THE FIRST SEQUENCES TO BE COLLECTED WERE THOSE OF PROTEINS

The development of protein-sequencing methods (Sanger and Tuppy 1951) led to the
sequencing of representatives of several of the more common protein families such as
cytochromes from a variety of organisms. Margaret Dayhoff (1972, 1978) and her collabo-
rators at the National Biomedical Research Foundation (NBRF), Washington, DC, were the
first to assemble databases of these sequences into a protein sequence atlas in the 1960s, and
their collection center eventually became known as the Protein Information Resource (PIR,
formerly Protein Identification Resource; http://watson.gmu.edu:8080/pirwww/index.
html). The NBRF maintained the database from 1984, and in 1988, the PIR-International
Protein Sequence Database (http://www-nbrf.georgetown.edu/pir) was established as a
collaboration of NBRF, the Munich Center for Protein Sequences (MIPS), and the Japan
International Protein Information Database (JIPID).

Dayhoff and her coworkers organized the proteins into families and superfamilies based
on the degree of sequence similarity. Tables that reflected the frequency of changes observed
in the sequences of a group of closely related proteins were then derived. Proteins that were
less than 15% different were chosen to avoid the chance that the observed amino acid
changes reflected two sequential amino acid changes instead of only one. From aligned
sequences, a phylogenetic tree was derived showing graphically which sequences were most
related and therefore shared a common branch on the tree. Once these trees were made,
they were used to score the amino acid changes that occurred during evolution of the genes
for these proteins in the various organisms from which they originated (Fig. 1.1).

Margaret Dayhoff

ORGANISM A AW TV A S AV R T S |
ORGANISM B A Y T V A A AV R T S |
ORGANISM C AW T V A A AV L T s |
A B C
WtoY
LtoR

Figure 1.1. Method of predicting phylogenetic relationships and probable amino acid changes dur-
ing the evolution of related protein sequences. Shown are three highly conserved sequences (A, B, and
C) of the same protein from three different organisms. The sequences are so similar that each posi-
tion should only have changed once during evolution. The proteins differ by one or two substitu-
tions, allowing the construction of the tree shown. Once this tree is obtained, the indicated amino
acid changes can be determined. The particular changes shown are examples of two that occur much
more often than expected by a random replacement process.
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Subsequently, a set of matrices (tables)—the percent amino acid mutations accepted by
evolutionary selection or PAM tables—which showed the probability that one amino acid
changed into any other in these trees was constructed, thus showing which amino acids are
most conserved at the corresponding position in two sequences. These tables are still used
to measure similarity between protein sequences and in database searches to find
sequences that match a query sequence. The rule used is that the more identical and con-
served amino acids that there are in two sequences, the more likely they are to have been
derived from a common ancestor gene during evolution. If the sequences are very much
alike, the proteins probably have the same biochemical function and three-dimensional
structural folds. Thus, Dayhoff and her colleagues contributed in several ways to modern
biological sequence analysis by providing the first protein sequence database as well as
PAM tables for performing protein sequence comparisons. Amino acid substitution tables
are routinely used in performing sequence alignments and database similarity searches,
and their use for this purpose is discussed in Chapters 3 and 7.

DNA SEQUENCE DATABASES

af

Walter Goad

Many types of se-
quence databases are
described in the first
annual issue of the
journal Nucleic Acids
Research.

The growth of the
number of sequences
in GenBank can be
tracked at http://www.
ncbi.nlm.nih.gov/Gen
Bank/genebankstats.
html.

DNA sequence databases were first assembled at Los Alamos National Laboratory (LANL),
New Mexico, by Walter Goad and colleagues in the GenBank database and at the European
Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. Translated DNA
sequences were also included in the Protein Information Resource (PIR) database at the
National Biomedical Research Foundation in Washington, DC. Goad had conceived of the
GenBank prototype in 1979; LANL collected GenBank data from 1982 to 1992. GenBank
is now under the auspices of the National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov). The EMBL Data Library was founded in 1980
(http://www.ebi.ac.uk). In 1984 the DNA DataBank of Japan (DDBJ), Mishima, Japan,
came into existence (http://www.ddbj.nig.ac.jp). GenBank, EMBL, and DDBJ have now
formed the International Nucleotide Sequence Database Collaboration (http://www.
ncbi.nlm.nih.gov/collab), which acts to facilitate exchange of data on a daily basis. PIR has
made similar arrangements.

Initially, a sequence entry included a computer filename and DNA or protein sequence
files. These were eventually expanded to include much more information about the
sequence, such as function, mutations, encoded proteins, regulatory sites, and references.
This information was then placed along with the sequence into a database format that
could be readily searched for many types of information. There are many such databases
and formats, which are discussed in Chapter 2.

The number of entries in the nucleic acid sequence databases GenBank and EMBL has
continued to increase enormously from the daily updates. Annotating all of these new
sequences is a time-consuming, painstaking, and sometimes error-prone process. As time
passes, the process is becoming more automated, creating additional problems of acc-
uracy and reliability. In December 1997, there were 1.26 X 10° bases in GenBank; this
number increased to 2.57 X 10° bases as of April 1999, and 1.0 X 10'° as of September
2000. Despite the exponentially increasing numbers of sequences stored, the implementa-
tion of efficient search methods has provided ready public access to these sequences.

To decrease the number of matches to a database search, non-redundant databases that
list only a single representative of identical sequences have been prepared. However, many
sequence databases still include a large number of entries of the same gene or protein
sequences originating from sequence fragments, patents, replica entries from different
databases, and other such sequences.



4 CHAPTER 1

SEQUENCE RETRIEVAL FROM PUBLIC DATABASES

David Lipman

An important step in providing sequence database access was the development of Web
pages that allow queries to be made of the major sequence databases (GenBank, EMBL,
etc.). An early example of this technology at NCBI was a menu-driven program called GEN-
INFO developed by D. Benson, D. Lipman, and colleagues. This program searched rapidly
through previously indexed sequence databases for entries that matched a biologist’s query.
Subsequently, a derivative program called ENTREZ (http://www.ncbi.nlm.nih.gov/Entrez)
with a simple window-based interface, and eventually a Web-based interface, was developed
at NCBI. The idea behind these programs was to provide an easy-to-use interface with a
flexible search procedure to the sequence databases.

Sequence entries in the major databases have additional information about the
sequence included with the sequence entry, such as accession or index number, name and
alternative names for the sequence, names of relevant genes, types of regulatory
sequences, the source organism, references, and known mutations. ENTREZ accesses this
information, thus allowing rapid searches of entire sequence databases for matches to one
or more specified search terms. These programs also can locate similar sequences (called
“neighbors” by ENTREZ) on the basis of previous similarity comparisons. When asked to
perform a search for one or more terms in a database, simple pattern search programs will
only find exact matches to a query. In contrast, ENTREZ searches for similar or related
terms, or complex searches composed of several choices, with great ease and lists the
found items in the order of likelihood that they matched the original query. ENTREZ
originally allowed straightforward access to databases of both DNA and protein sequences
and their supporting references, and even to an index of related entries or similar
sequences in separate or the same databases. More recently, ENTREZ has provided access
to all of Medline, the full bibliographic database of the National Library of Medicine
(NLM), Washington, DC. Access to a number of other databases, such as a phylogenetic
database of organisms and a protein structure database, is also provided. This access is
provided without cost to any user—private, government, industry, or research—a deci-
sion by the staff of NCBI that has provided a stimulus to biomedical research that cannot
be underestimated. NCBI presently handles several million independent accesses to their
system each day.

A note of caution is in order. Database query programs such as ENTREZ greatly facili-
tate keeping up with the increasing number of sequences and biomedical journals.
However, as with any automated method, one should be wary that a requested database
search may not retrieve all of the relevant material, and important entries may be
missed. Bear in mind that each database entry has required manual editing at some
stage, giving rise to a low frequency of inescapable spelling errors and other problems.
On occasion, a particular reference that should be in the database is not found because
the search terms may be misspelled in the relevant database entry, the entry may not be
present in the database, or there may be some more complicated problem. If exhaustive
and careful attempts fail, reporting such problems to the program manager or system
administrator should correct the problem.
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SEQUENCE ANALYSIS PROGRAMS

Methods for DNA
sequencing were devel-
oped in 1977 by
Maxam and Gilbert
(1977) and Sanger et
al. (1977). They are
described in greater
detail at the beginning
of Chapter 2.

Because DNA sequencing involves ordering a set of peaks (A, G, C, or T) on a sequencing
gel, the process can be quite error-prone, depending on the quality of the data.

As more DNA sequences became available in the late 1970s, interest also increased in
developing computer programs to analyze these sequences in various ways. In 1982 and
1984, Nucleic Acids Research published two special issues devoted to the application of com-
puters for sequence analysis, including programs for large mainframe computers down to
the then-new microcomputers. Shortly after, the Genetics Computer Group (GCG) was
started at the University of Wisconsin by J. Devereux, offering a set of programs for analysis
that ran on a VAX computer. Eventually GCG became commercial (http://www.gcg.com/).
Other companies offering microcomputer programs for sequence analysis, including Intelli-
genetics, DNAStar, and others, also appeared at approximately the same time. Laboratories
also developed and shared computer programs on a no-cost or low-cost basis. For example,
to facilitate the collection of data, the programs PHRED (Ewing and Green 1998; Ewing et
al. 1998) and PHRAP were developed by Phil Green and colleagues at the University of
Washington to assist with reading and processing sequencing data. PHRED and PHRAP are
now distributed by CodonCode Corporation (http://www.codoncode.com).

These commercial and noncommercial programs are still widely used. In addition, Web
sites are available to perform many types of sequence analyses; they are free to academic
institutions or are available at moderate cost to commercial users. Following is a brief
review of the development of methods for sequence analysis.

THE DOT MATRIX OR DIAGRAM METHOD FOR COMPARING SEQUENCES

In 1970, A.]. Gibbs and G.A. McIntyre (1970) described a new method for comparing two
amino acid and nucleotide sequences in which a graph was drawn with one sequence writ-
ten across the page and the other down the left-hand side. Whenever the same letter
appeared in both sequences, a dot was placed at the intersection of the corresponding
sequence positions on the graph (Fig. 1.2). The resulting graph was then scanned for a
series of dots that formed a diagonal, which revealed similarity, or a string of the same
characters, between the sequences. Long sequences can also be compared in this manner
on a single page by using smaller dots.

The dot matrix method quite readily reveals the presence of insertions or deletions
between sequences because they shift the diagonal horizontally or vertically by the amount
of change. Comparing a single sequence to itself can reveal the presence of a repeat of the
same sequence in the same (direct repeat) or reverse (inverted repeat or palindrome) ori-
entation. This method of self-comparison can reveal several features, such as similarity
between chromosomes, tandem genes, repeated domains in a protein sequence, regions of
low sequence complexity where the same characters are often repeated, or self-comple-
mentary sequences in RNA that can potentially base-pair to give a double-stranded struc-
ture. Because diagonals may not always be apparent on the graph due to weak similarity,
Gibbs and MclIntyre counted all possible diagonals and these counts were compared to
those of random sequences to identify the most significant alignments.

Maizel and Lenk (1981) later developed various filtering and color display schemes that
greatly increased the usefulness of the dot matrix method. This dot matrix representation
of sequence comparisons continues to play an important role in analysis of DNA and pro-
tein sequence similarity, as well as repeats in genes and very long chromosomal sequences,
as described in Chapter 3 (p. 59).
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Figure 1.2. A simple dot matrix comparison of two DNA sequences, AGCTAGGA and GACTAG-
GC. The diagonal of dots reveals a run of similar sequence CTAGG in the two sequences.

ALIGNMENT OF SEQUENCES BY DYNAMIC PROGRAMMING

Although the dot matrix method can be used to detect sequence similarity, it does not
readily resolve similarity that is interrupted by regions that do not match very well or that
are present in only one of the sequences (e.g., insertions or deletions). Therefore, one
would like to devise a method that can find what might be a tortuous path through a dot
matrix, providing the very best possible alignment, called an optimal alignment, between
the two sequences. Such an alignment can be represented by writing the sequences on suc-
cessive lines across the page, with matching characters placed in the same column and
unmatched characters placed in the same column as a mismatch or next to a gap as an
insertion (or deletion in the other sequence), as shown in Figure 1.3. To find an optimal
alignment in which all possible matches, insertions, and deletions have been considered to
find the best one is computationally so difficult that for proteins of length 300, 10%® com-
parisons will have to be made (Waterman 1989).

To simplify the task, Needleman and Wunsch (1970) broke the problem down into a
progressive building of an alignment by comparing two amino acids at a time. They start-
ed at the end of each sequence and then moved ahead one amino acid pair at a time, allow-
ing for various combinations of matched pairs, mismatched pairs, or extra amino acids in
one sequence (insertion or deletion). In computer science, this approach is called dynam-
ic programming. The Needleman and Wunsch approach generated (1) every possible
alignment, each one including every possible combination of match, mismatch, and single
insertion or deletion, and (2) a scoring system to score the alignment. The object was to
determine which was the best alignment of all by determining the highest score. Thus,
every match in a trial alignment was given a score of 1, every mismatch a score of 0, and
individual gaps a penalty score. These numbers were then added across the alignment to
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Figure 1.3. An alignment of two sequences showing matches, mismatches, and gaps (A). The best
or optimal alignment requires that all three types of changes be allowed.
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obtain a total score for the alignment. The alignment with the highest possible score was
defined as the optimal alignment.

The procedure for generating all of the possible alignments is to move sequentially
through all of the matched positions within a matrix, much like the dot matrix graph (see
above), starting at those positions that correspond to the end of one of the sequences, as
shown in Figure 1.4. At each position in the matrix, the highest possible score that can be
achieved up to that point is placed in that position, allowing for all possible starting points
in either sequence and any combination of matches, mismatches, insertions, and deletions.
The best alignment is found by finding the highest-scoring position in the graph, and then
tracing back through the graph through the path that generated the highest-scoring posi-
tions. The sequences are then aligned so that the sequence characters corresponding to this
path are matched.

G
2 1
I a
G i
A 1 5 {mirves gan pensity)

Deduced stgrenent with gap A
G AT C T A

a A T & A A

Figure 1.4. Simplified example of Needleman-Wunsch alignment of sequences GATCTA and
GATCA. First, all matches in the two sequences are given a score of 1, and mismatches a score of 0
(not shown), chosen arbitrarily for this example. Second, the diagonal 1s are added sequentially, in
this case to a total score of 4. At this point the row cannot be extended by another match of 1 to a
total score of 5. However, an extension is possible if a gap is placed in GATCA to produce
GATC A A, where A is the gap. To add the gap, a penalty score is subtracted from the total match
score of 5 now appearing in the last row and column. The best alignment is found starting with the

sequence characters that correspond to the highest number and tracing back through the positions
that contributed to this highest score.
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FINDING LOCAL ALIGNMENTS BETWEEN SEQUENCES
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Temple Smith

The above method finds the optimal alignment between two sequences, including the
entirety of each of the sequences. Such an alignment is called a global alignment. Smith and
Waterman (1981a,b) recognized that the most biologically significant regions in DNA and
protein sequences were subregions that align well and that the remaining regions made up
of less-related sequences were less significant. Therefore, they developed an important
modification of the Needleman-Wunsch algorithm, called the local alignment or Smith-
Waterman (or the Waterman-Smith) algorithm, to locate such regions. They also recog-
nized that insertions or deletions of any size are likely to be found as evolutionary changes
in sequences, and therefore adjusted their method to accommodate such changes. Finally,
they provided mathematical proof that the dynamic programming method is guaranteed
to provide an optimal alignment between sequences. The algorithm is discussed in detail
in Chapter 3 (p. 64).

Two complementary measurements had been devised for scoring an alignment of two
sequences, a similarity score and a distance score. As shown in Figure 1.3, there are three
types of aligned pairs of characters in each column of an alignment—identical matches,
mismatches, and a gap opposite an unmatched character. Using as an example a simple
scoring system of 1 for each type of match, the similarity score adds up all of the matches
in the aligned sequences, and divides by the sum of the number of matches and mis-
matches (gaps are usually ignored). This method of scoring sequence similarity is the one
most familiar to biologists and was devised by Needleman and Wunsch and used by Smith
and Waterman. The other scoring method is a distance score that adds up the number of
substitutions required to change one sequence into the other. This score is most useful for
making predictions of evolutionary distances between genes or proteins to be used for phy-
logenetic (evolutionary) predictions, and the method was the work of mathematicians,
notably P. Sellers. The distance score is usually calculated by summing the number of
mismatches in an alignment divided by the total number of matches and mismatches. The
calculation represents the number of changes required to change one sequence into the
other, ignoring gaps. Thus, in the example shown in Figure 1.3, there are 6 matches and 1
mismatch in an alignment. The similarity score for the alignment is 6/7 = 0.86 and the dis-
tance score is 1/7 = 0.14, if the required condition is given a simple score of 1. With this
simple scoring scheme, the similarity and distance scores add up to 1. Note also the equiv-
alence that the sum of the sequence lengths is equal to twice the number of matches plus
mismatches plus the number of deletions or insertions. Thus, in our example, the calcula-
tionis 8 + 9 =2 X (6 + 1) + 3 = 17. Usually more complex systems of scoring are used
to produce meaningful alignments, and alignments are evaluated by likelihood or odds
scores (Chapter 3), but an inverse relationship between similarity and distance scores for
the alignment still holds.

A difficult problem encountered in aligning sequences is deciding whether or not a par-
ticular alignment is significant. Does a particular alignment score reveal similarity between
two sequences, or would the score be just as easily found between two unrelated sequences
(or random sequence of similar composition generated by the computer)? This problem
was addressed by S. Karlin and S. Altschul (1990, 1993) and is addressed in detail in Chap-
ter 3 (p. 96).

An analysis of scores of unrelated or random sequences revealed that the scores could
frequently achieve a value much higher than expected in a normal distribution. Rather, the
scores followed a distribution with a positively skewed tail, known as the extreme value dis-
tribution. This analysis provided a way to assess the probability that a score found between
two sequences could also be found in an alignment of unrelated or random sequences of
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the same length. This discovery was particularly useful for assessing matches between a
query sequence and a sequence database discussed in Chapter 7. In this case, the evalua-
tion of a particular alignment score must take into account the number of sequence com-
parisons made in searching the database. Thus, if a score between a query protein sequence
and a database protein sequence is achieved with a probability of 107 of being between
unrelated sequences, and 80,000 sequences were compared, then the highest expected
score (called the EXPECT score) is 1077 X 8 X 10* = 8 X 1072 = 0.008. A value of
0.02—-0.05 is considered significant. Even when such a score is found, the alignment must
be carefully examined for shortness of the alignment, unrealistic amino acid matches, and
runs of repeated amino acids, the presence of which decreases confidence in an alignment.

MULTIPLE SEQUENCE ALIGNMENT

In addition to aligning a pair of sequences, methods have been developed for aligning three
or more sequences at the same time (for an early example, see Johnson and Doolittle 1986).
These methods are computer-intensive and usually are based on a sequential aligning of
the most-alike pairs of sequences. The programs commonly used are the GCG program
PILEUP (http://www.gcg. com/) and CLUSTALW (Thompson et al. 1994) (Baylor College
of Medicine, http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html). Once the
alignment of a related set of molecular sequences (a family) has been produced, highly
conserved regions (Gribskov et al. 1987) can be identified that may be common to that
particular family and may be used to identify other members of the same family. Two
matrix representations of the multiple sequence alignment called a PROFILE and a
POSITION-SPECIFIC SCORING MATRIX (PSSM) are important computational tools
for this purpose.

Multiple sequence alignments can also be the starting point for evolutionary modeling.
Each column of aligned sequence characters is examined, and then the most probable phy-
logenetic relationship or tree that would give rise to the observed changes is identified.

Another form of multiple sequence alignment is to search for a pattern that a set of DNA
or protein sequences has in common without first aligning the sequences (Stormo et al. 1982;
Stormo and Hartzell 1989; Staden 1984, 1989; Lawrence and Reilly 1990). For proteins, these
patterns may define a conserved component of a structural or functional domain. For DNA
sequences, the patterns may specify the binding site for a regulatory protein in a promoter
region or a processing signal in an RNA molecule. Both statistical and nonstatistical methods
have been widely used for this purpose. In effect, these methods sort through the sequences
trying to locate a series of adjacent characters in each of the sequences that, when aligned,
provides the highest number of matches. Neural networks, hidden Markov models, and the
expectation maximization and Gibbs sampling methods (Stormo et al. 1982; Lawrence et al.
1993; Krogh et al. 1994; Eddy et al. 1995) are examples of methods that are used. Explana-
tions and examples of these methods are described in Chapter 4.

PREDICTION OF RNA SECONDARY STRUCTURE

In addition to methods for predicting protein structure, other methods for predicting
RNA secondary structure on computers were also developed at an early time. If the com-
plement of a sequence on an RNA molecule is repeated down the sequence in the opposite
chemical direction, the regions may base-pair and form a hairpin structure, as illustrated
in Figure 1.5.
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Figure 1.5. Folding of single-stranded RNA molecule into a hairpin secondary structure. Shown are
portions of the sequence that are complementary: They can base-pair to form a double-stranded
region. G/C base pairs are the most energetic due to 3 H bonds; A/U and G/U are next most ener-
getic with two and one H bonds, respectively.

Tinoco et al. (1971) generated these symmetrical regions in small oligonucleotide
molecules and tried to predict their stability based on estimates of the free energy associat-
ed with stacked base pairs in the model and of the destabilizing effects of loops, using a
table of energy values (Tinoco et al. 1971; Salser 1978). Single-stranded loops and other
unpaired regions decreased the predicted energy. Subsequently, Nussinov and Jacobson
(1980) devised a fast computer method for predicting an RNA molecule with the highest
possible number of base pairs based on the same dynamic programming algorithm used
for aligning sequences. This method was improved by Zuker and Stiegler (1981), who
added molecular constraints and thermodynamic information to predict the most ener-
getically stable structure.

Another important use of RNA structure modeling is in the construction of databases
of RNA molecules. One of the most significant of these is the ribosomal RNA database
prepared by the laboratory of C. Woese (1987) (http://www.cme.msu.edu/RDP
html/index.html). RNA secondary structure prediction is discussed in Chapter 5. Align-
ment, structural modeling, and phylogenetic analysis based on these RNA sequences have
made possible the discovery of evolutionary relationships among organisms that would
not have been possible otherwise.

DISCOVERY OF EVOLUTIONARY RELATIONSHIPS USING SEQUENCES

Variations within a family of related nucleic acid or protein sequences provide an invalu-
able source of information for evolutionary biology. With the wealth of sequence infor-
mation becoming available, it is possible to track ancient genes, such as ribosomal RNA
and some proteins, back through the tree of life and to discover new organisms based on
their sequence (Barns et al. 1996). Diverse genes may follow different evolutionary histo-
ries, reflecting transfers of genetic material between species. Other types of phylogenetic
analyses can be used to identify genes within a family that are related by evolutionary
descent, called orthologs. Gene duplication events create two copies of a gene, called par-
alogs, and many such events can create a family of genes, each with a slightly altered, or
possibly new, function. Once alignments have been produced and alignment scores found,
the most closely related sequence pairs become apparent and may be placed in the outer
branches of an evolutionary tree, as shown for sequences A and B in Figure 1.1 (p. 2). The
next most-alike sequence, sequence C in Figure 1.1, will be represented by the next branch
down on the tree. Continuing this process generates a predicted pattern of evolution for
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that particular gene. Once a tree has been found, the sequence changes that have taken
place in the tree branches can be inferred.

The starting point for making a phylogenetic tree is a sequence alignment. For each pair
of sequences, the sequence similarity score gives an indication as to which sequences are
most closely related. A tree that best accounts for the numbers of changes (distances)
between the sequences (Fitch and Margoliash 1987) of these scores may then be derived.
The method most commonly used for this purpose is the neighbor-joining method (Saitou
and Nei 1987) described in Chapter 6. Alternatively, if a reliable multiple sequence align-
ment is available, the tree that is most consistent with the observed variation found in each
column of the sequence alignment may be used. The tree that imposes the minimum num-
ber of changes (the maximum parsimony tree) is the one chosen (Felsenstein 1988).

In making phylogenetic predictions, one must consider the possibility that several trees
may give almost the same results. Tests of significance have therefore been derived to
determine how well the sequence variation supports the existence of a particular tree
branch (Felsenstein 1988). These developments are also discussed in Chapter 6.

IMPORTANCE OF DATABASE SEARCHES FOR SIMILAR SEQUENCES

As DNA sequencing became a common laboratory activity, genes with an important bio-
logical function could be sequenced with the hope of learning something about the bio-
chemical nature of the gene product. An example was the retrovirus-encoded v-sis and
v-src oncogenes, genes that cause cancer in animals. By comparing the predicted sequences
of the viral products with all of the known protein sequences at the time, R. Doolittle and
colleagues (1983) and W. Barker and M. Dayhoff (1982) both made the startling discovery
that these genes appeared to be derived from cellular genes. The Sis protein had a sequence
very similar to that of the platelet-derived growth factor (PDGF) from mammalian cells,
and Src to the catalytic chain of mammalian cAMP-dependent kinases. Thus, it appeared
likely that the retrovirus had acquired the gene from the host cell as some kind of genetic
exchange event and then had produced a mutant form of the protein that could compro-
mise the function of the normal protein when the virus infected another animal. Subse-
quently, as molecular biologists analyzed more and more gene sequences, they discovered
that many organisms share similar genes that can be identified by their sequence similarity.

These searches have been greatly facilitated by having genetic and biochemical informa-
tion from model organisms, such as the bacterium Escherichia coli and the budding yeast Sac-
charomyces cerevisiae. In these organisms, extensive genetic analysis has revealed the function
of genes, and the sequences of these genes have also been determined. Finding a gene in a new
organism (e.g., a crop plant) with a sequence similar to a model organism gene (e.g., yeast)
provides a prediction that the new gene has the same function as in the model organism.
Such searches are becoming quite commonplace and are greatly facilitated by programs such
as FASTA (Pearson and Lipman 1988) and BLAST (Altschul et al. 1990).

The methods used by BLAST and other additional powerful methods to perform
sequence similarity searching are described further in the next section and in Chapter 7.

THE FASTA AND BLAST METHODS FOR DATABASE SEARCHES

As the number of new sequences collected in the laboratory increased, there was also an
increased need for computer programs that provided a way to compare these new
sequences sequentially to each sequence in the existing database of sequences, as was done
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Figure 1.6. Rapid identification of sequence similarity by FASTA and BLAST. FASTA looks for
short regions in these two amino acid sequences that match and then tries to extend the alignment
to the right and left. In this case, the program found by a quick and simple indexing method that
W, I, and then V occurred in the same order in both sequences, providing a good starting point for
an alignment. BLAST works similarly, but only examines matched patterns of length 3 of the more
significant amino acid substitutions that are expected to align less frequently by chance alone.

to identify successfully the function of viral oncogenes. The dynamic programming
method of Needleman and Wunsch would not work because it was much too slow for the
computers of the time; today, however, with much faster computers available, this method
can be used. W. Pearson and D. Lipman (1988) developed a program called FASTA, which
performed a database scan for similarity in a short enough time to make such scans rou-
tinely possible. FASTA provides a rapid way to find short stretches of similar sequence
between a new sequence and any sequence in a database. Each sequence is broken down
into short words a few sequence characters long, and these words are organized into a table
indicating where they are in the sequence. If one or more words are present in both
sequences, and especially if several words can be joined, the sequences must be similar in
those regions. Pearson (1990, 1996) has continued to improve the FASTA method for sim-
ilarity searches in sequence databases.

An even faster program for similarity searching in sequence databases, called BLAST,
was developed by S. Altschul et al. (1990). This method is widely used from the Web site
of the National Center for Biotechnology Information at the National Library of Medicine
in Washington, DC (http://www.ncbi.nlm.nih.gov/BLAST). The BLAST server is probably
the most widely used sequence analysis facility in the world and provides similarity search-
ing to all currently available sequences. Like FASTA, BLAST prepares a table of short
sequence words in each sequence, but it also determines which of these words are most sig-
nificant such that they are a good indicator of similarity in two sequences, and then con-
fines the search to these words (and related ones), as described in Figure 1.6. There are ver-
sions of BLAST for searching nucleic acid and protein databases, which can be used to
translate DNA sequences prior to comparing them to protein sequence databases (Altschul
et al. 1997). Recent improvements in BLAST include GAPPED-BLAST, which is threefold
faster than the original BLAST, but which appears to find as many matches in databases,
and PSI-BLAST (position-specific-iterated BLAST), which can find more distant matches
to a test protein sequence by repeatedly searching for additional sequences that match an
alignment of the query and initially matched sequences. These methods are discussed in
Chapter 7.

PREDICTING THE SEQUENCE OF A PROTEIN BY TRANSLATION OF DNA SEQUENCES

Protein sequences are predicted by translating DNA sequences that are cDNA copies of
mRNA sequences from a predicted start and end of an open reading frame. Unfortunate-
ly, cDNA sequences are much less prevalent than genomic sequences in the databases. Par-
tial sequence (expressed sequence tags, or EST's) libraries for many organisms are available,
but these only provide a fraction of the carboxy-terminal end of the protein sequence and
usually only have about 99% accuracy. For organisms that have few or no introns in their
genomic DNA (such as bacterial genomes), the genomic DNA may be translated. For most
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eukaryotic organisms with introns in their genes, the protein-encoding exons must be pre-
dicted and then translated by methods described in Chapter 8. These genome-based pre-
dictions are not always accurate, and thus it remains important to have cDNA sequences
of protein-encoding genes. Promoter sequences in genomes may also be analyzed for com-
mon patterns that reflect common regulatory features. These types of analyses require
sophisticated approaches that are also discussed in Chapter 8 (Hertz et al. 1990).

PREDICTING PROTEIN SECONDARY STRUCTURE

There are a large number of proteins whose sequences are known, but very few whose
structures have been solved. Solving protein structures involves the time-consuming and
highly specialized procedures of X-ray crystallography and nuclear magnetic resonance
(NMR). Consequently, there is much interest in trying to predict the structure of a protein,
given its sequence. Proteins are synthesized as linear chains of amino acids; they then form
secondary structures along the chain, such as a helices, as a result of interactions between
side chains of nearby amino acids. The region of the molecule with these secondary struc-
tures then folds back and forth on itself to form tertiary structures that include a helices,
B sheets comprising interacting 3 strands, and loops (Fig. 1.7). This folding often leaves
amino acids with hydrophobic side chains facing into the interior of the folded molecule
and polar amino acids that can interact with water and the molecular environment facing
outside in loops. The amino acid sequence of the protein directs the folding pathway,
sometimes assisted by proteins called chaperonins. Chou and Fasman (1978) and Garnier
et al. (1978) searched the small structural database of proteins for the amino acids associ-
ated with each of the secondary structure types—a helices, turns, and 3 strands. Sequences
of proteins whose structures were not known were then scanned to determine whether the
amino acids in each region were those often associated with one type of structure. For
example, the amino acid proline is not often found in « helices because its side chain is not
compatible with forming a helix. This method predicted the structure of some proteins
well but, in general, was about as likely to predict a correct as an incorrect structure.

As more protein structures were solved experimentally, computational methods were
used to find those that had a similar structural fold (the same arrangement of secondary
structures connected by similar loops). These methods led to the discovery that as new
protein structures were being solved, they often had a structural fold that was already
known in a group of sequences. Thus, proteins are found to have a limited number of ~500
folds (Chothia 1992), perhaps due to chemical restraints on protein folding or to the exis-
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Figure 1.7. Folding of a protein from a linear chain of amino acids to a three-dimensional structure.
The folding pathway involves amino acid interactions. Many different amino acid patterns are found
in the same types of folds, thus making structure prediction from amino acid sequence a difficult
undertaking.
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tence of a single evolutionary pathway for protein structure (Gibrat et al. 1996). Further-
more, proteins without any sequence similarity could adopt the same fold, thus greatly
complicating the prediction of structure from sequence. Methods for finding whether or
not a given protein sequence can occupy the same three-dimensional conformation as
another based on the properties of the amino acids have been devised (Bowie et al. 1991).
Databases of structural families of proteins are available on the Web and are described in
Chapter 9.

Amos Bairoch (Bairoch et al. 1997) developed another method for predicting the bio-
chemical activity of an unknown protein, given its sequence. He collected sequences of
proteins that had a common biochemical activity, for example an ATP-binding site, and
deduced the pattern of amino acids that was responsible for that activity, allowing for some
variability. These patterns were collected into the PROSITE database (http://www.expasy.
ch/prosite). Unknown sequences were scanned for the same patterns. Subsequently, Steve
and Jorga Henikoff (Henikoff and Henikoff 1992) examined alignments of the protein
sequences that make up each MOTIF and discovered additional patterns in the aligned
sequences called BLOCKS (see http://www.blocks.thcrc.org/). These patterns offered an
expanded ability to determine whether or not an unknown protein possessed a particular
biochemical activity. The changes that were in each column of these aligned patterns were
counted and a new set of amino acid substitution matrices, called BLOSUM matrices, sim-
ilar to the PAM matrices of Margaret Dayhoff, were produced. One of these matrices,
BLOSUMBS62, is most often used for aligning protein sequences and searching databases for
similar sequences (Henikoff and Henikoff 1992) (see Chapter 7).

Sophisticated statistical and machine-training techniques have been used in more recent
protein structure prediction programs, and the success rate has increased. A recent
advance in this now active field of research is to organize proteins into groups or families
on the basis of sequence similarity, and to find consensus patterns of amino acid domains
characteristic of these families using the statistical methods described in Chapters 4 and 9.
There are many publicly accessible Web sites described in Chapter 9 that provide the lat-
est methods for identifying proteins and predicting their structures.

THE FIRST COMPLETE GENOME SEQUENCE

Although many viruses had already been sequenced, the first planned attempt to sequence
a free-living organism was by Fred Blattner and colleagues (Blattner et al. 1997) using the
bacterium E. coli. However, there was some concern over whether such a large sequence,
about 4 X 10° bp, could be obtained by the then-current sequencing technology. The first
published genome sequence was that of the single, circular chromosome of another bac-
terium, Hemophilus influenzae (Fleischmann et al. 1995), by The Institute of Genetics
Research (TIGR, at http://www.tigr.org/), which had been started by researcher Craig Ven-
ter. The project was assisted by microbiologist Hamilton Smith, who had worked with this
organism for many years. The speedup in sequencing involved using automated reading of
DNA sequencing gels through dye-labeling of bases, and breaking down the chromosome
into random fragments and sequencing these fragments as rapidly as possible without
knowledge of their location in the whole chromosome. Computer analysis of such shotgun
cloning and sequencing techniques had been developed much earlier by R. Staden at Cam-
bridge University and other workers, but the TIGR undertaking was much more ambi-
tious. In this genome project, newly read sequences were immediately entered into a com-
puter database and compared with each other to find overlaps and produce contigs of two
or more sequences with the assistance of computer programs. This procedure circumvent-
ed the need to grow and keep track of large numbers of subclones. Although the same
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sequence was often obtained up to 10 times, the sequence of the entire chromosome (2 X
10° bp), less a few gaps, was rapidly assembled in the computer over a 9-month period at
a cost of about $10°.

This success heralded a large number of other sequencing projects of various prokary-
otic and eukaryotic microorganisms, with a tremendous potential payoff in terms of uti-
lizable gene products and evolutionary information about these organisms. To date, com-
pleted projects include more than 30 prokaryotes, yeast S. cerevisiae (see Cherry et al.
1997), the nematode Caenorhabditis elegans (see C. elegans Sequencing Consortium 1998),
and the fruit fly Drosophila (see Adams et al. 2000). The plant Arabidopsis thaliana and the
human genome sequencing projects are ongoing and will be completed during 2000 or
shortly thereafter.

The Human Genome Project, a large, federally funded collaborative project, will com-
plete sequencing of the entire human genome by 2003. The project was developed from
an idea discussed at scientific meetings in 1984 and 1985, and a pilot project, the
Human Genome Initiative, was begun by the Department of Energy (DOE) in 1986.
National Institutes of Health funding of the project began in 1987 under the Office of
Genome Research. Currently, the project is constituted as the National Human
Genome Research Initiative. In 1998, a new commercial venture under the leadership
of Craig Venter was formed to sequence the majority of the human genome by 2001.
This group, which uses a whole genome shotgun cloning approach and intensive com-
puter processing of data, has already completed the Drosophila sequence and will
sequence the mouse genome following completion of the human genome. Both groups
simultaneously announced completion of the sequencing of the human genome in
2000.

ACEDB, THE FIRST GENOME DATABASE

As more genetic and sequence information became available for the model organisms,
interest arose in generating specific genome databases that could be queried to retrieve this
information. Such an enterprise required a new level of sharing of data and resources
between laboratories. Although there were initial concerns about copyright issues, credits,
accuracy, editorial review, and curating, eventually these concerns disappeared or became
resolved as resources on the Internet developed. The first genome database, called ACEDB
(a C. elegans database), and the methods to access this database were developed by Mike
Cherry and colleagues (Cherry and Cartinhour 1993). This database was accessible
through the internet and allowed retrieval of sequences, information about genes and
mutants, investigator addresses, and references. Similar databases were subsequently
developed using the same methods for A. thaliana and S. cerevisiae. Presently, there is a
large number of such publicly available databases. Web access to these databases is dis-
cussed in Chapter 10 (Table 10.1, p. 482).
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CHAPTER 2

THIS CHAPTER SUMMARIZES METHODS used to collect sequences of DNA molecules and
store them in computer files. Once in the computer, the sequences can be analyzed by a
variety of methods. Additionally, assembly of the sequences of large molecules from short
sequence fragments can readily be undertaken. Assembled sequences are stored in a com-
puter file along with identifying features, such as DNA source (organism), gene name, and
investigator. Sequences and accessory information are then entered into a database. This
procedure organizes them so that specific ones can be retrieved by a database query pro-
gram for subsequent use. Unfortunately, most sequence analysis programs require that the
information in a sequence file be stored in a particular format. To use these programs, it is
necessary to be aware of these formats and to be able to convert one format to another.
These programs are outlined in greater detail in Chapter 3.

DNA SEQUENCING

Sequencing DNA has become a routine task in the molecular biology laboratory. Purified
fragments of DNA cut from plasmid/phage clones or amplified by polymerase chain reac-
tion (PCR) are denatured to single strands, and one of the strands is hybridized to an
oligonucleotide primer. In an automated procedure, new strands of DNA are synthesized
from the end of the primer by heat-resistant Taq polymerase from a pool of deoxyribonu-
cleotide triphosphates (ANTPs) that includes a small amount of one of four chain-termi-
nating nucleotides (ddNTPs). For example, using ddATP, the resulting synthesis creates a
set of nested DNA fragments, each one ending at one of the As in the sequence through the
substitution of a fluorescent-labeled ddATP, as shown in Figure 2.1. A similar set of frag-
ments is made for each of the other three bases, but each is labeled with a different fluo-
rescent ddNTP.

The combined mixture of all labeled DNA fragments is electrophoresed to separate the
fragments by size, and the ladder of fragments is scanned for the presence of each of the
four labels, producing data similar to those shown in Figure 2.2. A computer program then
determines the probable order of the bands and predicts the sequence. Depending on the
actual procedure being used, one run may generate a reliable sequence of as many as 500
nucleotides. For accurate work, a printout of the scan is usually examined for abnormali-

Figure 2.1. Method used to synthesize a nested set of DNA fragments, each ending at a base position
complementary to one of the bases in the template sequence. To the left is a double-stranded DNA
molecule several kilobases in length. After denaturation, the DNA is annealed to a short primer oligonu-
cleotide primer (black arrow), which is complementary to an already sequenced region on the molecule.
New DNA is then synthesized in the presence of a fluorescently labeled chain-terminating ddN'TP or one
of the four bases. The reactions produce a nested set of labeled molecules. The resulting fragments are sep-
arated in order by length to give the sequence display shown in Fig. 2.2.
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631
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CGTCGTACAA
GAAGAAAATC
ATGCTAATAC
TTCTCCACAT
GAACATACAA
TACATTGGGA
AGCCGGATCA
ACTTTCTTAT
TTTTCATTCA
TTGANACAGA
TGNTAATTTT

TTTAGGTTAT
AATATGGGAA
TGGGGAARAT
GACTTTTTTT
AACGTTGAAG
ACAAAATTGA
TGGAAATAGG
CGCCATTGCT
TTTGGTACTA
AACTATCATC
NGGNAAATGA

GTGCGAATTC
ACGGTAATGG
GTTGATGTTT
ATTTATTAGG
ATTACTATGA
AATAGAATTT
CCTTTGTGGG
GAACCCGTTT
TTTCAGGCCT
TCTGGTTTGA
AATTGGGNTT

ACAAATTGAA
TCTCGAATCT
AGATGAAAGA
CTCTTCACTT
TGATGCTGAT
ATAATGGTTT
CTTGTGCTGA
GCAGGTTTGA
GANTCAATGC
ATAANCTNTC
TGAAAAAAAA

AATACAAGAG
CGATCGTACT
AAACGACCTA
CTAGTTAGTG
GAGGATTCTC
TTAAAGGTGA
TGGAAAGATT
TTTTGATTTG
CCNAGTTTAA
TAAGAACCAG
TCGGN

ARACAATCCC
GAGTTTTGAT
CAAAGAAGAT
TAATTGTACT
GTGATGGTAA
AGGAGAGGAG
TTCTTGGAGA
ATTATTATAT
TTAACCCCAC
CTTNCCCGGG

TAAAATCGAT
TCGTTTATTG
GAAGTACGGT
GTAAAAATCT
TATTGATTAC
AAGAGGAGAG
CATTTTCTCC
CAATGTNAAG
ACTCGTTGNA
GAGATCATTG

TTGATTAAGA
AATTATCCGG
GGGAAGGTTC
CAGGATGATC
TCTCGTATAA
ATTTTACTGA
TCTCTATAAA
TTATGATTTT
TGCTGCTGTT
GATTNAATNC

GGAGCGAAAA
TGAAAAGAGT
GTGTTGATTC
AAAAGATGAA
TTAACATAGA
TTTGAGTTGA
CAAGCTTATG
TGGTGGTGGA
TCCTTTGGTC
ATGCTTNTAC

Figure 2.2. Example of a DNA sequence obtained on an ABI-Prism 377 automated sequencer. The target DNA is denatured by heating and then annealed
to a specific primer. Sequencing reactions are carried out in a single tube containing Amplitaq (Perkin-Elmer), dNTPs, and four ddNTPs, each base labeled
with a different fluorescent dichloro-rhodamine dye. The polymerase extends synthesis from the primer, until a ddNTP is incorporated instead of ANTP,
terminating the molecule. The denaturing, reannealing, and synthesis steps are recycled up to 25 times, excess labeled ddNTPs are removed, and the
remaining products are electrophoresed on one lane of a polyacrylamide gel. As the bands move down the gel, the rhodamine dyes are excited by a laser
within the sequencer. Each of the four ddNTP types emits light at a different wavelength band that is detected by a digital camera. The sequence of changes
is plotted as shown in the figure and the sequence is read by a base-calling algorithm. More recently developed machines allow sequencing of 96 samples
at a time by capillary electrophoresis using more automated procedures. The accuracy and reliability of high-throughput sequencing have been much
improved by the development of the PHRED, PHRAP, and CONSED system for base-calling, sequence assembly, and assembled sequence editing (Ewing

and Green 1998; Gordon et al. 1998).
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Figure 2.3. Sequential sequencing of a DNA molecule using oligonucleotide primers. One of the
denatured template DNA strands is primed for sequencing by an oligonucleotide (yellow) comple-
mentary to a known sequence on the molecule. The resulting sequence may then be used to pro-
duce two more oligonucleotide primers downstream in the sequence, one to sequence more of the
same strand (purple) and a second (turquoise) that hybridizes to the complementary strand and pro-
duces a sequence running backward on this strand, thus providing a way to confirm the first
sequence obtained.

ties that decrease the quality of the sequence, and the sequence may then be edited manu-
ally. The sequence can also be verified by making an oligonucleotide primer complemen-
tary to the distal part of the readable sequence and using it to obtain the sequence of the
complementary strand on the original DNA template. The first sequence can also be
extended by making a second oligonucleotide matching the distal end of the readable
sequence and using this primer to read more of the original template. When the process is
fully automated, a number of priming sites may be used to obtain sequencing results that
give optimal separation of bands in each region of the sequence. By repeating this proce-
dure, both strands of a DNA fragment several kilobases in length can be sequenced
(Fig. 2.3).

GENOMIC SEQUENCING

To sequence larger molecules, such as human chromosomes, individual chromosomes are
purified and broken into 100-kb or larger random fragments, which are cloned into vec-
tors designed for large molecules, such as artificial yeast (YAC) or bacterial (BAC) chro-
mosomes. In a laborious procedure, the resulting library is screened for fragments called
contigs, which have overlapping or common sequences, to produce an integrated map of
the chromosome. Many levels of clone redundancy may be required to build a consensus
map because individual clones can have rearrangements, deletions, or two separate frag-
ments. These do not reflect the correct map and have to be eliminated. Once the correct
map has been obtained, unique overlapping clones are chosen for sequencing. However,
these molecules are too large for direct sequencing. One procedure for sequencing these
clones is to subclone them further into smaller fragments that are of sizes suitable for
sequencing, make a map of these clones, and then sequence overlapping clones (Fig. 2.4).
However, this method is expensive because it requires a great deal of time to keep track of
all the subclones.

An alternative method is to sequence all the subclones, produce a computer database of
the sequences, and then have the computer assemble the sequences from the overlaps that
are found. Up to 10 levels of redundancy are used to get around the problem of a small
fraction of abnormal clones. This procedure was first used to obtain the sequence of the 4-
Mb chromosome of the bacterium Haemophilus influenzae by The Institute of Genetics
Research (TIGR) team (Fleischmann et al. 1995). Only a few regions could not be joined
because of a problem subcloning those regions into plasmids, requiring manual sequenc-
ing of these regions from another library of phage subclones.
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Map fragments = =

fragments Sequence all fragments

l Sequence overlapping
— —_———— ——— and assemble

Assembled
sequence

sequence.

Figure 2.4. Methods for large-scale sequencing. A large DNA molecule 100 kb to several megabas-
es in size is randomly sheared and cloned into a cloning vector. In one method, a map of various-
sized fragments is first made, overlapping fragments are identified, and these are sequenced. In a
faster method that is computationally intense, fragments in different size ranges are placed in vec-
tors, and their ends are sequenced. Fragments are sequenced without knowledge of their chromoso-
mal location, and the sequence of the large parent molecule is assembled from any overlaps found.
As more and more fragments are sequenced, there are enough overlaps to cover most of the

Shotgun Sequencing

A controversy has arisen as to whether or not the above shotgun sequencing strategy
can be applied to genomes with repetitive sequences such as those likely to be
encountered in sequencing the human genome (Green 1997; Myers 1997). When
DNA fragments derived from different chromosomal regions have repeats of the
same sequence, they will appear to overlap. In a new whole shotgun approach, Cel-
era Genomics is sequencing both ends of DNA fragments of short (2 kb), medium
(10 kb), and long (BAC or ~100 kb) lengths. A large number of reads are then
assembled by computer. This method has been used to assemble the genome of the
fruit fly Drosophila melanogaster after removal of the most highly repetitive regions
(Myers et al. 2000) and also to assemble a significant proportion of the human

genome.

SEQUENCING cDNA LIBRARIES OF EXPRESSED GENES

Two common goals in sequence analysis are to identify sequences that encode proteins,
which determine all cellular metabolism, and to discover sequences that regulate the
expression of genes or other cellular processes. Genomic sequencing as described above
meets both goals. However, only a small percentage of the genomic sequence of many
organisms actually encodes proteins because of the presence of introns within coding
regions and other noncoding regions in the genome. Although there has been a great deal
of progress in developing computational methods for analyzing genomic sequences and
finding these protein-encoding regions (see Chapter 8), these methods are not completely
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reliable and, furthermore, such genomic sequences are often not available. Therefore,
cDNA libraries have been prepared that have the same sequences as the mRNA molecules
produced by organisms, or else cDNA copies are sequenced directly by RT-PCR (copying
of mRNA by reverse transcriptase followed by sequencing of the cDNA copy by the poly-
merase chain reaction). By using cDNA sequence with the introns removed, it is much
simpler to locate protein-encoding sequences in these molecules. The only possible diffi-
culty is that a gene of interest may be developmentally expressed or regulated in such a way
that the mRNA is not present. This problem has been circumvented by pooling mRNA
preparations from tissues that express a large proportion of the genome, from a variety of
tissues and developing organs or from organisms subjected to several environmental influ-
ences. An important development for computational purposes was the decision by Craig
Venter to prepare databases of partial sequences of the expressed genes, called expressed
sequence tags or ESTs, which have just enough DNA sequence to give a pretty good idea
of the protein sequence. The translated sequence can then be compared to a database of
protein sequences with the hope of finding a strong similarity to a protein of known func-
tion, and hence to identify the function of the cloned EST. The corresponding cDNA clone
of the gene of interest can then be obtained and the gene completely sequenced.

SUBMISSION OF SEQUENCES TO THE DATABASES

Investigators are encouraged to submit their newly obtained sequences directly to a
member of the International Nucleotide Sequence Database Collaboration, such as the
National Center for Biotechnology Information (NCBI), which manages GenBank
(http://www.ncbi.nlm.nih.gov); the DNA  Databank of Japan (DDB]J;
http://www.ddbj.nig.ac.jp); or the European Molecular Biology Laboratory (EMBL)/EBI
Nucleotide Sequence Database (http://www.embl-heidelberg.de). NCBI reviews new
entries and updates existing ones, as requested. A database accession number, which is
required to publish the sequence, is provided. New sequences are exchanged daily by the
GenBank, EMBL, and DDB]J databases.

The simplest and newest way of submitting sequences is through the Web site
http://www.ncbi.nlm.nih.gov/ on a Web form page called BankIt. The sequence can also be
annotated with information about the sequence, such as mRNA start and coding regions.
The submitted form is transformed into GenBank format and returned to the submitter
for review before being added to GenBank. The other method of submission is to use
Sequin (formerly called Authorin), which runs on personal computers and UNIX
machines. The program provides an easy-to-use graphic interface and can manage large
submissions such as genomic sequence information. It is described and demonstrated on
http://www.ncbi.nlm.nih.gov/Sequin/index.html and may be obtained by anonymous FTP
from ncbi.nlm.nih.gov/sequin/. Completed files can also be E-mailed to gb-
sub@ncbi.nlm.nih.gov or can be mailed on diskette to GenBank Submissions, National
Center for Biotechnology Information, National Library of Medicine, Bldg. 38A, Room
8N-803, Bethesda, Maryland 20894.

SEQUENCE ACCURACY

It should be apparent from the above description of sequencing projects that the higher the
level of accuracy required in DNA sequences, the more time-consuming and expensive the
procedure. There is no detailed check of sequence accuracy prior to submission to GenBank
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and other databases. Often, a sequence is submitted at the time of publication of the
sequence in a journal article, providing a certain level of checking by the editorial peer-
review process. However, many sequences are submitted without being published or prior
to publication. In laboratories performing large sequencing projects, such as those engaged
in the Human Genome Project or the genome projects of model organisms, the granting
agency requires a certain level of accuracy of the order of 1 possible error per 10 kb. This
level of accuracy should be sufficient for most sequence analysis applications such as
sequence comparisons, pattern searching, and translation. In other laboratories, such as
those performing a single-attempt sequencing of ESTs, the error rate may be much higher,
approximately 1 in 100, including incorrectly identified bases and inserted or deleted bases.
Thus, in translating EST sequences in GenBank and other databases, incorrect bases may
translate to the wrong amino acid. The worst problem, however, is that base insertions/dele-
tions will cause frameshifts in the sequence, thus making alignment with a protein sequence
very difficult. Another type of database sequence that is error-prone is a fragment of
sequence from the immunological variant of a pathogenic organism, such as the regions in
the protein coat of the human immunodeficiency virus (HIV). Although this low level of
accuracy may be suitable for some purposes such as identification, for more detailed analy-
ses, e.g., evolutionary analyses, the accuracy of such sequence fragments should be verified.

COMPUTER STORAGE OF SEQUENCES

Before using a sequence file in a sequence analysis program, it is important to ensure that
computer sequence files contain only sequence characters and not special characters used
by text editors. Editing a sequence file with a word processor can introduce such changes
if one is not careful to work only with text or so-called ASCII files (those on the typewrit-
er keyboard). Most text editors normally create text files that include control characters in
addition to standard ASCII characters. These control characters will only be recognized
correctly by the text editor program. Sequence files that contain such control characters
may not be analyzed correctly, depending on whether or not the sequence analysis pro-
gram filters them out. Editors usually provide a way to save files with only standard ASCII
characters, and these files will be suitable for most sequence analysis programs.

ASCII and Hexadecimal

Computers store sequence information as simple rows of sequence characters called
strings, which are similar to the sequences shown on the computer terminal. Each
character is stored in binary code in the smallest unit of memory, called a byte. Each
byte comprises 8 bits, with each bit having a possible value of 0 or 1, producing 255
possible combinations. By convention, many of these combinations have a specific
definition, called their ASCII equivalent. Some ASCII values are defined as keyboard
characters, others as special control characters, such as signaling the end of a line (a
line feed and a carriage return), or the end of a file full of text (end-of-file character).
A file with only ASCII characters is called an ASCII file. For convenience, all binary
values may be written in a hexadecimal format, which corresponds to our decimal
format 0, 1,...... 9 plus the letters A, B, . . . . E. Thus, hexadecimal OF corresponds
to binary 0000 1111 and decimal 15, and FF corresponds to binary 1111 1111 and
decimal 255. A DNA sequence is usually stored and read in the computer as a series
of 8-bit words in this binary format. A protein sequence appears as a series of 8-bit
words comprising the corresponding binary form of the amino acid letters.
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Sequence and other data files that contain non-ASCII characters also may not be transferred
correctly from one machine to another and may cause unpredictable behavior of the commu-
nications software. Some communications software can be set to ignore such control charac-
ters. For example, the file transfer program (FTP) has ASCII and binary modes, which may be
set by the user. The ASCII mode is useful for transferring text files, and the binary mode is use-
ful for transferring compressed data files, which also contain non-ASCII characters.

Most sequence analysis programs also require not only that a DNA or protein sequence
file be a standard ASCII file, but also that the file be in a particular format such as the
FASTA format (see below). The use of windows on a computer has simplified such prob-
lems, since one merely has to copy a sequence from one window, for example, a window
that is running a Web browser on the ENTREZ Web site, and paste it into another, for
example, that of a translation program.

In addition to the standard four base symbols, A, T, G, and C, the Nomenclature
Committee of the International Union of Biochemistry has established a standard code to
represent bases in a nucleic acid sequence that are uncertain or ambiguous. The codes are
listed in Table 2.1.

For computer analysis of proteins, it is more convenient to use single-letter than three-
letter amino acid codes. For example, GenBank DNA sequence entries contain a translat-
ed sequence in single-letter code. The standard, single-letter amino acid code was estab-
lished by a joint international committee, and is shown in Table 2.2. When the name of
only one amino acid starts with a particular letter, then that letter is used, e.g., C, cysteine.
In other cases, the letter chosen is phonetically similar (R, arginine) or close by in the
alphabet (K, lysine).

Table 2.1. Base—-nucleic acid codes

Symbol Meaning Explanation

G G Guanine

A A Adenine

T T Thymine

C C Cytosine

R Aor G puRine

Y CorT pYrimidine

M AorC aMino

K GorT Keto

S Cor G Strong interactions

3 h bonds
W AorT Weak interactions
2 h bonds

H A, CorT H follows G in
not G alphabet

B CGorT B follows A in
not A alphabet

A% A, Cor G V follows U in
not T (not U) alphabet

D A GorT D follows C in
not C alphabet

N ACGorT Any base

Adapted from NC-IUB (1984).
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Table 2.2. Table of standard amino acid code letters

1-letter code 3-letter code Amino acid
A? Ala alanine

C Cys cysteine

D Asp aspartic acid
E Glu glutamic acid
F Phe phenylalanine
G Gly glycine

H His histidine

I Ile isoleucine

K Lys lysine

L Leu leucine

M Met methionine
N Asn asparagine

P Pro proline

Q Gln glutamine

R Arg arginine

S Ser serine

T Thr threonine

\% Val valine

W Trp tryptophan

X Xxx undetermined amino acid
Y Tyr tyrosine

zP Glx either glutamic acid or glutamine

Adapted from IUPAC-IUB (1969, 1972, 1983).

2 Letters not shown are not commonly used.

b Note that sometimes when computer programs translate DNA sequences, they will put a
“Z” at the end to indicate the termination codon. This character should be deleted from the
sequence.

SEQUENCE FORMATS

One major difficulty encountered in running sequence analysis software is the use of dif-
fering sequence formats by different programs. These formats all are standard ASCII files,
but they may differ in the presence of certain characters and words that indicate where dif-
ferent types of information and the sequence itself are to be found. The more commonly
used sequence formats are discussed below.

GenBank DNA Sequence Entry

The format of a database entry in GenBank, the NCBI nucleic acid and protein sequence
database, is as follows: Information describing each sequence entry is given, including lit-
erature references, information about the function of the sequence, locations of mRNAs
and coding regions, and positions of important mutations. This information is organized
into fields, each with an identifier, shown as the first text on each line. In some entries,
these identifiers may be abbreviated to two letters, e.g., RF for reference, and some identi-
fiers may have additional subfields. The information provided in these fields is described
in Figure 2.5 and the database organization is described in Figure 2.6. The CDS subfield in
the field FEATURES gives the amino acid sequence, obtained by translation of known and
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LOCUS name of locus, length and type of sequence,
classification of organism, data of entry
DEFINITION description of entry
ACCESSION accession numbers of original source
KEYWORDS key words for cross referencing this entry
SOURCE source organism of DNA
ORGANISM description of organism
REFERENCE
COMMENT biological function or database information
FEATURES information about sequence by base position or range of positions
source range of sequence, source organism
misc_signal range of sequence, type of function or signal
mRNA range of seguence, mRNA
CDS range of sequence, protein coding region
intron range of sequence, position of intron
mutation sequence position, change in sequence for mutation
BASE COUNT count of A, C, G, T and other symbols
ORIGIN text indicating start of sequence
1 gaattcgata aatctctggt ttattgtgca gtttatggtt ccaaaatcgce
51 atatactcac agcataactg tatatacacc cagggggcgg aatgaaagcg
// database symbol for end of sequence
Figure 2.5. GenBank DNA sequence entry.
potential open reading frames, i.e., a consecutive set of three-letter words that could be
codons specifying the amino acid sequence of a protein. The sequence entry is assumed by
computer programs to lie between the identifiers “ORIGIN” and “//”.

The sequence includes numbers on each line so that sequence positions can be located
by eye. Because the sequence count or a sequence checksum value may be used by the com-
puter program to verify the sequence composition, the sequence count should not be mod-
ified except by programs that also modify the count. The GenBank sequence format often
has to be changed for use with sequence analysis software.

Accession Organism Reference Name Reywords Sequence
no
..123 Escherichia. Medliinel,. LexA S0S regqulon, ATG. .
coli vasea protein repressor,
transcriptional
requlator, ..
..124 Escherichia Medline2,. UmubD S0S regulon,.. GTA..
coli e protein
..125 Saccharomyces. Medline3,. GAL4 transcriptional CAT..
cerevisiae ceeen protein regulator,..
..125 Homo. sapiens Medline4,. gluco- transcriptional TGT..
Caeen corticoid regulator, ..
receptor

Figure 2.6. Organization of the GenBank database and the search procedure used by ENTREZ. In this database format, each
row is another sequence entry and each column another GenBank field. When one sequence entry is retrieved, all of these
fields will be displayed, as in Fig. 2.5. Only a few fields and simple examples are shown for illustration. A search for the term
“SOS regulon and coli’
been made listing all of the sequences that have any given term, one index for each field. Similarly, a search for transcriptional
regulator will find three sequences.

’ in all fields will find two matching sequences. Finding these sequences is simple because indexes have
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European Molecular Biology Laboratory Data Library Format

The output of a DDBJ
DNA sequence entry is
almost identical to
that of GenBank.

The European Molecular Biology Laboratory (EMBL) maintains DNA and protein
sequence databases. The format for each entry in these databases is shown in Figure 2.7. As
with GenBank entries, a large amount of information describing each sequence entry is
given, including literature references, information about the function of the sequence,
locations of mRNAs and coding regions, and positions of important mutations. This infor-
mation is organized into fields, each with an identifier, shown as the first text on each line.
The meaning of each of these fields is explained in Figure 2.7. These identifiers are abbre-
viated to two letters, e.g., RF for reference, and some identifiers may have additional sub-
fields. The sequence entry is assumed by computer programs to lie between the identifiers
“SEQUENCE” and “//” and includes numbers on each line to locate parts of the sequence
visually. The sequence count or a checksum value for the sequence may be used by com-
puter programs to make sure that the sequence is complete and accurate. For this reason,
the sequence part of the entry should usually not be modified except with programs that
also modify this count. This EMBL sequence format is very similar to the GenBank format.
The main differences are in the use of the term ORIGIN in the GenBank format to indi-
cate the start of sequence; also, the EMBL entry does not include the sequence of any trans-
lation products, which are shown instead as a different entry in the database. This sequence
format often has to be changed for use with sequence analysis software.

SwissProt Sequence Format

The format of an entry in the SwissProt protein sequence database is very similar to the
EMBL format, except that considerably more information about the physical and bio-
chemical properties of the protein is provided.

FASTA Sequence Format

The FASTA sequence format includes three parts shown in Figure 2.8: (1) a comment line
identified by a “>” character in the first column followed by the name and origin of the

D
AC

DT

RW .
0s, oc

DR
cC
FH, FT

S0

RN, RP, RX, RA, RT, RL literature reference or source

gaattcgata aatctctggt ttattgtgca gtttatggtt ccaaaatcgce cttttgetgt 60
atatactcac agcataactg tatatacacc cagggggegg aatgaaageg ttaacggeca 120

// symbol to indicate end of sequence

identification code for sequence in the database
accession number giving origin of sequence

dates of entry and modification

key cross-reference words for lookup up this entry
source organism

i.d. in other databases

description of biological function

information about sequence by base position or range of positions
source range of sequence, source organism

misc_signal range of sequence, type of function or signal

mRNA range of sequence, mRNA

CDS range of sequence, protein coding region

intron range of sequence, position of intron

mutation sequence position, change in sequence for mutation
count of A, C, G, T and other symbols

Figure 2.7. EMBL sequence entry format.
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>¥YCZ2_YEAST protein in HMR 3' region
MRAVVIEDGKAVVKEGVPIPELEEGFV
GNPTDWAHIDYKVGPQGSILGCDAAGQ
IVKLGPAVDPKDFSIGDYIYGFIHGSS
VRFPSNGAFAEYSAISTVVAYKSPNEL
KFLGEDVLPAGPVRSLEGAATIPVSLT*

Figure 2.8. FASTA sequence entry format.

sequence; (2) the sequence in standard one-letter symbols; and (3) an optional “*” which
indicates end of sequence and which may or may not be present. The presence of “*” may
be essential for reading the sequence correctly by some sequence analysis programs. The
FASTA format is the one most often used by sequence analysis software. This format pro-
vides a very convenient way to copy just the sequence part from one window to another
because there are no numbers or other nonsequence characters within the sequence. The
FASTA sequence format is similar to the protein information resource (NBRF) format
except that the NBRF format includes a first line with a “>” character in the first column
followed by information about the sequence, a second line containing an identification
name for the sequence, and the third to last lines containing the sequence, as described
below.

National Biomedical Research Foundation/Protein Information Resource Sequence

Format

This sequence format, which is sometimes also called the PIR format, has been used by the
National Biomedical Research Foundation/Protein Information Resource (NBRF) and
also by other sequence analysis programs. Note that sequences retrieved from the PIR
database on their Web site (http://www-nbrf.georgetown.edu) are not in this compact for-
mat, but in an expanded format with much more information about the sequence, as
shown below. The NBRF format is similar to the FASTA sequence format but with signif-
icant differences. An example of a PIR sequence format is given in Figure 2.9. The first line
includes an initial “>” character followed by a two-letter code such as P for complete
sequence or F for fragment, followed by a 1 or 2 to indicate type of sequence, then a semi-
colon, then a four- to six-character unique name for the entry. There is also an essential
second line with the full name of the sequence, a hyphen, then the species of origin. In
FASTA format, the second line is the start of the sequence and the first line gives the
sequence identifier after a “>” sign. The sequence terminates with an asterisk.

>P1l;ILEC

lexA repressor - Escherichia coli
MEKALTARQQEVFDLIRDHISQTGMPPTRAE
TAQRLGFRSPNAAEEHLKALARKGVIEIVS
GASRGIRLLQEEEEGLPLVGRVAAGEPLLA
QOHIEGHYQVDPSLFRKPNADFLLRVSGMSM
KDIGIMDGDLLAVHKTQODVRNGQVVVARID
DEVTVRRLRKKQGNKVELLPENSEFKPIVVD
LRQOSFTIEGLAVGVIRNGDWL

Figure 2.9. NBRF sequence entry format.
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:YEAST protein in HMR 3' region
YCZ2
MKAVVIEDGKAVVKEGVPIPELEEGFV
GNPTDWAHIDYRVGPQGSILGCDAAGQ
IVRLGPAVDPKDFSIGDYIYGFIHGSS
VRFPSNGAFAEYSAISTVVAYKSPNEL
KFLGEDVLPAGPVRSLEGAATIPVSLT1

Figure 2.10. Intelligenetics sequence entry format.

Stanford University/Intelligenetics Sequence Format

Started by a molecular genetics group at Stanford University, and subsequently continued
by a company, Intelligenetics, the IG format is similar to the PIR format (Fig. 2.10), except
that a semicolon is usually placed before the comment line. The identifier on the second
line is also present. At the end of the sequence, a 1 is placed if the sequence is linear, and a
2 if the sequence is circular.

Genetics Computer Group Sequence Format

Earlier versions of the Genetics Computer Group (GCG) programs require a unique
sequence format and include programs that convert other sequence formats into GCG for-
mat. Later versions of GCG accept several sequence formats. A converted GenBank file is
illustrated in Figure 2.11. Information about the sequence in the GenBank entry is first
included, followed by a line of information about the sequence and a checksum value. This
value (not shown) is provided as a check on the accuracy of the sequence by the addition
of the ASCII values of the sequence. If the sequence has not been changed, this value
should stay the same. If one or more sequence characters become changed through error,
a program reading the sequence will be able to determine that the change has occurred
because the checksum value in the sequence entry will no longer be correct. Lines of infor-
mation are terminated by two periods, which mark the end of information and the start of
the sequence on the next line. The rest of the text in the entry is treated as sequence. Note
the presence of line numbers. Since there is no symbol to indicate end of sequence, no text
other than sequence should be added beyond this point. The sequence should not be
altered except by programs that will also adjust the checksum score for the sequence. The
GCG sequence format may have to be changed for use with other sequence analysis soft-
ware. GCG also includes programs for reformatting sequence files.

BASE COQUNT 215 A 224 C 263 G 250 T

ORIGIN

Filename, Length of sequence, Date, Checksum value, ..

1 GAATTCGATA AATCTCTGGT TTATTGTGCA GTTTATGGTT CCAAARATCGC
51 CTPTTGCTGT ATATACTCAC AGCATAACTG TATATACACC CAGGGGGCGG

Figure 2.11. GCG sequence entry format.
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Format of Sequence File Retrieved from the National Biomedical Research
Foundation/Protein Information Resource

The file format has approximately the same information as a GenBank or EMBL sequence
file but is formatted slightly differently, as in Figure 2.12. This format is presently called the
PIR/CODATA format.

Plain/ASCIl.Staden Sequence Format

This sequence format is a computer file that includes only the sequence with no other
accessory information. This particular format is used by the Staden Sequence Analysis pro-
grams (http://www/.mrc-lmb.com.ac.uk/pubseq) produced by Roger Staden at Cambridge
University (Staden et al. 2000). The sequence must be further formatted to be used for
most sequence analysis programs.

ENTRY ILEC
#type complete
TITLE lexA repressor - Escherichia coli
ORGANISM
#formal name Escherichia coli
DATE 29-Jul-1981
#sequence revision 0l1-Sep-1981
#text change 14-Nov-1997
ACCESSIONS A90808; A93734; S11945; B65212; A03569
REFERENCE A90808
#authors Horii, T.; Ogawa, T.; Ogawa, H.
#journal Cell (1981) 23:689-697
#title Nucleotide sequence of the lexA gene of Escherichia coli.
#cross-references MUID:81186269
#contents lexA
#accession AS0808
##molecule_type DNA
##residues 1-202
##label HOR
REFERENCE

COMMENTS
GENETICS
#gene lexA
#map_position 92 min
CLASSIFICATION
#superfamily lexa repressor
KEYWORDS DNA binding, repressor, transcription regulator
SUMMARY
#length 202
#molecular weight 22358
SEQUENCE
5 10 15 20 25 30
1MKALTARQOQEVFDLIRDHISQTGMPPTRAE

Figure 2.12. Protein Information Resource sequence format.
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Abstract Syntax Notation Sequence Format

Abstract Syntax Notation (ASN.1) is a formal data description language that has been
developed by the computer industry. ASN.1 (http://www-sop.inria.fr/rodeo/personnel/
hoschka/asn1.html; NCBI 1993) has been adopted by the National Center for Biotechnol-
ogy Information (NCBI) to encode data such as sequences, maps, taxonomic information,
molecular structures, and bibliographic information. These data sets may then be easily
connected and accessed by computers. The ASN.1 sequence format is a highly structured
and detailed format especially designed for computer access to the data. All the informa-
tion found in other forms of sequence storage, e.g., the GenBank format, is present. For
example, sequences can be retrieved in this format by ENTREZ (see below). However, the
information is much more difficult to read by eye than a GenBank formatted sequence.
One would normally not need to use the ASN.1 format except when running a computer
program that uses this format as input.

Genetic Data Environment Sequence Format

Genetic Data Environment (GDE) format is used by a sequence analysis system called the
Genetic Data Environment, which was designed by Steven Smith and collaborators (Smith
et al. 1994) around a multiple sequence alignment editor that runs on UNIX machines.
The GDE features are incorporated into the SEQLAB interface of the GCG software, ver-
sion 9. GDE format is a tagged-field format similar to ASN.1 that is used for storing all
available information about a sequence, including residue color. The file consists of vari-
ous fields (Fig. 2.13), each enclosed by brackets, and each field has specific lines, each with
a given name tag. The information following each tag is placed in double quotes or follows
the tag name by one or more spaces.

{
name "Short name for sequence"
longname "Long (more descriptive) name for sequence"

sequence-ID
creation-date

"Unique ID number"
"mm/dd/yy hh:mm:ss”

direction [-1]11]

strandedness [1]2]

type {DNA|RNA|PROTEIN | TEXT |MASK]

offset (~9299999,999999)

group-ID (0,999)

creator "Author's name"

descrip "Verbose description”

comments "Lines of comments about a sequence"

sequence "gctagctagectagectagetettagetgtagtegtagetgatgetag
ctgatgctagctagctagctagectgategatgetagetgategtag
ctgacggactgatgctagectagetagetagetgtctagtgtegtag
tgcttattge”

}

Figure 2.13. The Genetic Data Environment format.




36

CHAPTER 2

CONVERSIONS OF ONE SEQUENCE FORMAT TO ANOTHER

READSEQ to Switch between Sequence Formats

READSEQ is an extremely useful sequence formatting program developed by D. G. Gilbert
at Indiana University, Bloomington (gilbertd@bio.indiana.edu). READSEQ can recognize
a DNA or protein sequence file in any of the formats shown in Table 2.3, identify the for-
mat, and write a new file with an alternative format. Some of these formats are used for
special types of analyses such as multiple sequence alignment and phylogenetic analysis.
The appearance of these formats for two sample DNA sequences, seql and seq2, is shown
in Table 2.4. READSEQ may be reached at the Baylor College of Medicine site at
http://dot.imgen.bcm.tmc.edu:9331/seq-util/readseq.html and also by anonymous FTP
from ftp.bio.indiana.edu/molbio/readseq or ftp.bioindiana.edu/molbio/mac to obtain the
appropriate files.

Data files that have multiple sequences, such as those required for multiple sequence
alignment and phylogenetic analysis using parsimony (PAUP), are also converted. Exam-
ples of the types of files produced are shown in Table 2.4. Options to reverse-complement
and to remove gaps from sequences are included. SEQIO, another sequence conversion
program for a UNIX machine, is described at http://bioweb.pasteur.fr/docs/seqio/seqio.
html and is available for download at http://www.cs.ucdavis.edu/~gusfield/seqio.html.

Table 2.3. Sequence formats recognized by format conversion
program READSEQ

Abstract Syntax Notation (ASN.1)

DNA Strider

European Molecular Biology Laboratory (EMBL)
Fasta/Pearson

Fitch (for phylogenetic analysis)

GenBank

Genetics Computer Group (GCG)*?
Intelligenetics/Stanford

Multiple sequence format (MSF)

National Biomedical Research Foundation (NBRF)
. Olsen (in only)

. Phylogenetic Analysis Using Parsimony (PAUP) NEXUS format
Phylogenetic Inference package (Phylip v3.3, v3.4)
Phylogenetic Inference package (Phylip v3.2)

Plain text/Staden®

. Pretty format for publication (output only)

. Protein Information Resource (PIR or CODATA)

. Zuker for RNA analysis (in only)

PN LD

— = = e e e e e
N N -

 For conversion of single sequence files only. The other conversions can
be performed on files with single or multiple sequences.
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Table 2.4. Multiple sequence format conversions by READSEQ

1.  Fasta/Pearson format

>seql
agctagct agct agct
>seq?2
aactaact aact aact

2. Intelligenetics format

;seql, 16 bases, 2688 checksum.
seql

agctagctagctagctl

;seq2, 16 bases, 25C8 checksum.
seq?

aactaactaactaactl

3. GenBank format

LOCUS seql 16 bp
DEFINITION seqgl, 16 bases, 2688 checksum.
ORIGIN
1 agctagctag ctagct
//
LOCUS seq? 16 bp
DEFINITION seqg2, 16 bases, 25C8 checksum.
ORIGIN
1 aactaactaa ctaact
/7

4. NBRF format

>DL;seql

seql, 16 bases, 2688 checksum.
agctagctag ctagct*

>DL;seq?

seq?2, 16 bases, 25C8 checksum.
aactaactaa ctaact*

5. EMBL format

ID seql
DE seql, 16 bases, 2688 checksum.
SQ 16 BP
agctagctag ctagct
//
ID seq?
DE seq2, 16 bases, 25C8 checksum.
SQ 16 BP
aactaactaa ctaact
//

Continued.
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Table 2.4. Continued.

6. GCG format

seql
seql Length: 16 Check: 9864
1 agctagctag ctagct

seq?
seq?2 Length: 16 Check: 9672
1 aactaactaa ctaact

7.  Format for the Macintosh sequence analysis program DNA Strider

; JHHF from DNA Strider ;-)
; DNA sequence seql, 16 bases, 2688 checksum.

agctagctagctagct

//

; JHHFE from DNA Strider ;-)

; DNA sequence seq2, 16 bases, 25C8 checksum.

aactaactaactaact
!/

8.  Format for phylogenetic analysis programs of Walter Fitch

seql, 16 bases, 2688 checksum.
agc tag cta gct agc t

seq?2, 16 bases, 25C8 checksum.
aac taa cta act aac t

9.  Format for phylogenetic analysis programs PHYLIP of ]. Felsenstein v 3.3 and 3.4.

2 16
seql agctagctag ctagct
seq? aactaactaa ctaact

10.  Protein International Resource PIR/CODATA format

AR
ENTRY seql
TITLE seql, 16 bases, 2688 checksum.
SEQUENCE
5 10 15 20
25 30
1l agctagctagctagecect
/17
ENTRY seq?
TITLE seq?, 16 bases, 25C8 checksum.
SEQUENCE
5 10 15 20
25 30

1l aactaactaactaact
/17
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11. GCG multiple sequence format (MSF)

/tmp/readseq.in.2449 MSF: 16 Type: N January 01,
1776 12:00 Check: 9536

Name: seql Len: 16 Check: 9864
Weight: 1.00
Name: seq? Len: 16 Check: 9672

Weight: 1.00
//

seql agctagctag ctagct
seq? aactaactaa ctaact

12.  Abstract Syntax Notation (ASN.1) format

Bioseq-set ::= {
seq-set f
seq |

id { local id 1 },
descr { title “seql” },
inst {
repr raw, mol dna, length 16, topology linear,
seq-data
iupacna “agctagctagctagct”
b,
seq {
id { local id 2 },
descr { title “seq2” },
inst {
repr raw, mol dna, length 16, topology linear,
seq-data
iupacna “aactaactaactaact”
bl
bl

13.  NEXUS format used by the phylogenetic analysis program PAUP by David Swofford

FNEXUS

[/tmp/readseq.in.2506 -- data title]

[Name: seql Len: 16 Check: 2688]
[Name: seq? Len: 16 Check: 25C8]
pbegin data;

dimensions ntax=2 nchar=16;
format datatype=dna interleave missing=-;
matrix

seql agctagctagctagct

seq? aactaactaactaact

Two sequences in FASTA multiple sequence format (1) were used as input for the remainder of the for-

mat options (2-14).
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GCG Programs for Conversion of Sequence Formats

The “from” programs convert sequence files from GCG format into the named format,
and the “to” programs convert the alternative format into GCG format. Shown are the
actual program names, no spaces included. There are no programs to convert to GenBank
and EMBL formats.

FROMEMBL
FROMFASTA
FROMGENBANK
FROMIG
FROMPIR
FROMSTADEN
TOFASTA

TOIG

TOPIR
TOSTADEN

In addition, the GCG programs include the following sequence formatting programs: (1)
GETSEQ, which converts a simple ASCII file being received from a remote PC to GCG for-
mat; (2) REFORMAT, which will format a GCG file that has been edited, and will also per-
form other functions; and (3) SPEW, which sends a GCG sequence file as an ASCII file to
a remote PC.

MULTIPLE SEQUENCE FORMATS

Most of the sequence formats listed above can be used to store multiple sequences in tan-
dem in the same computer file. Exceptions are the GCG and raw sequence formats, which
are designed only for single sequences. GCG has an alternative multiple sequence format,
which is described below. In addition, there are formats especially designed for multiple
sequences that can also be used to show their alignments or to perform types of multiple
sequence analyses such as phylogenetic analysis. In the case of PAUP, the program will
accept MSA format and convert to the NEXUS format. These formats are illustrated below
using the same two short sequences.

1. Aligned sequences in FASTA format. The aligned sequence characters occupy the same
line and column, and gaps are indicated by a dash.

>gi 730305
MATHHTLWMGLALLGVLGDLOAAPEAQVSVQPNFQQDKFL
RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ

>gi 404390
—————————————————————— APEAQVSVQPNFQPDKFL
RTQTPRAELKEKFTAFCKAQGFTEDSIVFLPQTDKCMTEQ
>gi 895868

MAALRMLWMGLVLLGLLGFPQTPAQGHDTVQPNFQQDKFL
RTQTLKDELKEKFTTFSKAQGLTEEDIVFLPQPDKCIQE-

represents the same alignment as:

MATHHTLWMGLALLGVLGDLQAAPEAQVSVQPNFQQDKFL
---------------------- APEAQVSVQPNFQPDKFL

RTQTPRAELKEKFTAFCKAQGFTEDTIVFLPQTDKCMTEQ
RTQTLKDELKEKFTTFSKAQGLTEEDIVFLPQPDKCIQE--
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2. GCG multiple sequence format (MSF) produced by the GCG multiple sequence align-
ment program PILEUP. The gap symbol is “~”. The length indicated is the length of the
alignment, which is the length of the longest sequence including gaps.

PileUp of: @list4
Symbol comparison table: GenRunData:blosum62.cmp CompCheck: 6430

GapWeight: 12
GapLengthWeight: 4

listd.msf MSF: 883 Type: P February 28, 1997 16:42 Check: 482

Name: haywire Len: 883 Check: 3979 Weight: 1.00
Name: xpb-human Len: 883 Check: 9129 Weight: 1.00
Name: rad2b Len: 883 Check: 5359 Weight: 1.00
Name: xpb-ara Len: 883 Check: 2015 Weight: 1.00
/]
1 50
haywire MGPPK
XP=MUDAN CTrrrrrrrs TTTTTTTTLY CTTTTTTTETT) CTTTTTTTTLD T LT T T T LT
rad25 MTDVEGYQPK SKGKIFPDMG ESFFSSDEDS PATDAEIDEN YDDNRETSEG
XPO-ARE crrrrrrrr crTrTrTrTrs CTTTTTTTLTD CTTTTETLTLD T
51 100

haywire KSRKDRSG.. GDKFGKKRRA EDEAFTQLVD DNDSLDATES EGIPGAASKN
xpb-human MGKRDRAD.. RDKKKSRKRH YED...EEDD EEDAPGNDPQ EAVPSAAGKQ
rad25 RGERDTGAMV TGLKKPRKKT KSSRHTAADS SMNQMDAKDK ALLQDTNSDI
XPD-ara  ~emmmmsn s M KYGGKDDQKM KNIQNAEDYY

3. ALN form produced by multiple sequence alignment program CLUSTALW (Thomp-
son et al. 1994). In addition to the alignment position, the program also shows the cur-
rent sequence position at the end of each row.

Page 1.1
1 15 16 30 31 45
1 gi|730305| MATHHTLWMGLALLG VLGDLQAAPEAQVSV QPNFQQDKFLGRWFS
23
2 91404390 --------------- ------- APEAQVSYV QPNFQPDKFLGRWFS
45

3 gi[895868 MAALRMLWMGLVLLG LLGFPQTPAQGHDTY QPNFQQDKFLGRWYS

4. Blocked alignment used by GDE and GCG SEQLAB (Fig. 2.14). Unlike the other exam-
ples shown, which are all simple text files of an alignment, the following figure is a
screen display of an alignment, using GDE and SEQLAB display programs. The under-
lying alignment in text format would be similar to the GCG multiple sequence align-
ment file shown above.
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Figure 2.14. A multiple sequence alignment editor for GCG MSF files. For information on using multiple sequence align-
ment editors and for examples of other editors, see Chapter 4.

5. Format used by Fitch phylogenetic analysis programs.

seql, 16 bases, 2688 checksum.
agc tag cta gct agc t
seq?2, 16 bases, 25C8 checksum.
aac taa cta act aac t

. Formats used by Felsenstein phylogenetic analysis programs PHYLIP (phylogenetic

inference package): 2 for two sequences, 16 for length of alignment.

a. version 3.2

2 16 YF
seql agctagctag ctagct
seq? aactaactaa ctaact

b. versions 3.3 and 3.4

2 16
seql agctagctag ctagct
seq? aactaactaa ctaact

. Format used by phylogenetic analysis program PAUP (phylogenetic analysis using par-

simony). ntax is number of taxa, nchar is the length of the alignment, and interleave
allows the alignment to be shown in readable blocks. The other terms describe the type
of sequence and the character used to indicate gaps.
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FNEXUS
[ comments ]
begin data;

dimensions ntax=4 nchar=100;
format datatype=protein interleave gap=-;

matrix
[ 1
501]
NOYWIP@ ==c=c=css= csosccscoscoc coocososos oososooooss oooos MGPPK
Xpb-human ---------- ---------- ---------"- -“--------- --------- -
rad25 MTDVEGYQPK SKGKIFPDMG ESFFSSDEDS PATDAEIDEN YDDNRETSEG
XPD=fFE m=c°cc=ccccs sccccocsossc SooooSoo0S S5oS0I0SSS SooSSSGoS S
[ 51
1001

haywire KSRKDRSG-- GDKFGKKRRA EDEAFTQLVD DNDSLDATES EGIPGAASKN
xpb-human MGKRDRAD-- RDKKKSRKRH YED---EEDD EEDAPGNDPQ EAVPSAAGKQ
rad25 RGERDTGAMV TGLKKPRKKT KSSRHTAADS SMNQMDAKDK ALLQDTNSDI
Xpb-ara --------o- s-soo----- oo M KYGGKDDQKM KNIQNAEDYY

endblock;

8. The Selex format used by hidden Markov program HMMER by Sean Eddy has been
used to keep track of the alignment of small RNA molecules.

# Example selex file

seql ACGACGACGACG.
seq? . . GGGAAAGG. GA
seq3 UUU. . AAAUUU . A
seql ..ACG
seq?2 AAGGG

seq3 AA...UUU

Each line contains a name, followed by the aligned sequence. A space, dash, underscore,
or period denotes a gap. Long alignments are split into multiple blocks and interleaved or
separated by blank lines. The number of sequences, their order, and their names must be
the same in every block, and every sequence must be represented even though there are no
residues present.

9. The block multiple sequence alignment format (see http://www.blocks.thcrc.org/).

Identification starts contain a short identifier for the group of sequences from which the
block was made and often is the original Prosite group ID. The identifier is terminated by
a semicolon, and “BLOCK” indicates the entry type.

AC contains the block number, a seven-character group number for sequences from
which the block was made, followed by a letter (A-Z) indicating the order of the block in
the sequences. The block number is a 5-digit number preceded by BL (BLOCKS database)
or PR (PRINTS database). min,max is the minimum,maximum number of amino acids
from the previous block or from the sequence start. DE describes sequences from which
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the block was made. BL contains information about the block: xxx is the amino acids in the
spaced triplet found by MOTIF upon which the block is based. w is the width of the
sequence segments (columns) in the block. s is the number of sequence segments (rows)
in the block. Other values (nl1, n2) describe statistical features of the block. Sequence_id is
a list of sequences. Each sequence line contains a sequence identifier, the offset from the
beginning of the sequence to the block in parentheses, the sequence segment, and a weight
for the segment.

ID short_identifier; BLOCK

AC block_number; distance from previous block = (min,max)
DE description

BL xxx motif; width=w; seqs=s; 99.5%=nl; strength=n2
sequence_id (offset) sequence_segment sequence_weight.

/1

ID  GLU_CARBOXYLATION; BLOCK
AC BLOOO11; distance from previous block=(1,64)
DE Vitamin K-dependent carboxylation domain proteins.
BL ECA motif; width=40; seqs=34; 99.5%=1833; strength=1412
FA10_BOVIN ( 45) LEEVKQGNLERECLEEACSLEEAREVFEDAEQTDEFWSKY 31

FAI0_CHICK ( 45) LEEMKQGNIERECNEERCSKEEAREAFEDNEKTEEFWNIY 46
FALI0_HUMAN ( 45) LEEMKKGHLERECMEETCSYEEAREVFEDSDKTNEFWNKY 33
FA7_BOVIN ( 5) LEELLPGSLERECREELCSFEEAHEIFRNEERTRQFWVSY 57
FA7_HUMAN (  65) LEELRPGSLERECKEEQCSFEEAREIFKDAERTKLFWISY 42
OSTC_CHICK ( 6) SGVAGAPPNPIEAQREVCELSPDCNELADELGFQEAYQRR 94

/1

STORAGE OF INFORMATION IN A SEQUENCE DATABASE

As shown by the above examples, each DNA or protein sequence database entry has much
information, including an assigned accession number(s); source organism; name of locus;
reference(s); keywords that apply to sequence; features in the sequence such as coding
regions, intron splice sites, and mutations; and finally the sequence itself. The above infor-
mation is organized into a tabular form very much like that found in a relational database.
(Additional information about databases is given in the box “Database Types.”) If one
imagines a large table with each sequence entry occupying one row, then each column will
include one of the above types of information for each sequence, and each column is called
a FIELD (see Fig. 2.6). The last column contains the sequences themselves. It is very easy
to make an index of the information in each of these fields so that a search query can locate
all the occurrences through the index. Even related sequences are cross-referenced. In
addition, the information in one database can be cross-referenced to that in another
database. The DNA, protein, and reference databases have all been cross-referenced so that
moving between them is readily accomplished (see ENTREZ section below, p. 45).

Database Types

There are several types of databases; the two principal types are the relational and
object-oriented databases. The relational database orders data in tables made up of
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rows giving specific items in the database, and columns giving the features as
attributes of those items. These tables are carefully indexed and cross-referenced with
each other, sometimes using additional tables, so that each item in the database has a
unique set of identifying features. A relational model for the GenBank sequence
database has been devised at the National Center for Genome Resources
(http://www.ncgr.org/research/sequence/schema.html).

The object-oriented database structure has been useful in the development of bio-
logical databases. The objects, such as genetic maps, genes, or proteins, each have an
associated set of utilities for analysis and display of the object and a set of attributes
such as identifying name or references. In developing the database, relationships
among these objects are identified. To standardize some commonly arising objects in
biological databases, e.g., maps, the Object Management Group (http://www.
omg.org) has formed a Life Science Research Group. The Life Science Research
Group is a consortium of commercial companies, academic institutions, and soft-
ware vendors that is trying to establish standards for displaying biological informa-
tion from bioinformatics and genomics analyses (http://www.omg.org/home
pages/lsr). The Common Object Request Broker Architecture (CORBA) is the Object
Management Group’s interface for objects that allows different computer applica-
tions to communicate with each other through a common language, Interface Defi-
nition Language (IDL). To plan an object-oriented database by defining the classes of
objects and the relationships among these objects, a specific set of procedures called
the Unified Modeling Language (UML) has been devised by the OMG group.

DNA sequence analysis software packages often include sequence databases that are
updated regularly. The organizations that manage sequence databases also provide public
access through the internet. Using a browser such as Netscape or Explorer on a local per-
sonal computer, these sites may be visited through the internet and a form can be filled out
with the sequence name. Once the correct sequence has been identified, the sequence is
delivered to the browser and may be saved as a local computer file, cut-and-pasted from
the browser window into another window of an analysis program or editor, or even past-
ed into another browser page for analysis at a second Web site. A useful feature of brows-
er programs for sequence analysis is the capability of having more than one browser win-
dow running at a time. Hence, one browser window may retrieve sequences from a
database and a second may analyze these sequences. At the time of retrieving the sequence,
several sequence formats may be available. The FASTA format, which is readily converted
into other formats and also is smaller and simpler, containing just a line of sequence iden-
tifiers followed by the sequence without numbers, is very useful for this purpose. A list of
sequence databases accessible through the internet is provided in Table 2.5.

USING THE DATABASE ACCESS PROGRAM ENTREZ

One straightforward way to access the sequence databases is through ENTREZ, a resource
prepared by the staff of the National Center for Biotechnology Information, National
Library of Medicine, Bethesda, Maryland, and available through their web site at
http://ncbi.nlm.nih.gov/Entrez. ENTREZ provides a series of forms that can be filled out
to retrieve a DNA or protein sequence, or a Medline reference related to the molecular
biology sequence databases. After search for either a protein or a DNA sequence is chosen
at the above address, another Web page is provided with a form to fill out for the search,
as shown in Figure 2.15.
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Biological databases
are beginning to use
“controlled vocabular-
ies” for entering data
so that these defined
terms can confidently
be used for database
subsequent searches.

Table 2.5. Major sequence databases accessible through the internet

1. GenBank at the National Center of Biotechnology Information, National Library of Medicine, Wash-
ington, DC accessible from:
http://www.ncbi.nlm.nih.gov/Entrez

2. European Molecular Biology Laboratory (EMBL) Outstation at Hixton, England
http://www.ebi.ac.uk/embl/index.html

3. DNA DataBank of Japan (DDBJ) at Mishima, Japan
http://www.ddbj.nig.ac.jp/

4. Protein International Resource (PIR) database at the National Biomedical Research Foundation in
Washington, DC (see Barker et al. 1998)
http://www-nbrf.georgetown.edu/pirwww/

5. The SwissProt protein sequence database at ISREC, Swiss Institute for Experimental Cancer Research
in Epalinges/Lausanne
http://www.expasy.ch/cgi-bin/sprot-search-de

6. The Sequence Retrieval System (SRS) at the European Bioinformatics Institute allows both simple and

complex concurrent searches of one or more sequence databases. The SRS system may also be used on

a local machine to assist in the preparation of local sequence databases.

http://srs6.ebi.ac.uk

The databases are available at the indicated addresses and return sequence files through an internet brows-
er. Many of the sites shown provide access to multiple databases. The first three database centers are updat-
ed daily and exchange new sequences daily, so that it is only necessary to access one of them. Additional Web
addresses of databases of protein families and structure, and genomic databases, are given in Chapter 9.
These databases can also provide access to sequence of a protein family or organism.

On the ENTREZ form, make a selection in the data entry window after the term
“Search,” then enter search terms in the longer data entry window after “for.” The database
will be searched for sequence database entries that contain all of these terms or related
ones. Using boolean logic, the search looks for database entries that include the first term
AND the second, and subsequent terms repeated until the last term. The “Limits” link on
the ENTREZ form page is used to limit the GenBank field to be searched, and various log-
ical combinations of search terms may be designed by this method. These fields refer to the
GenBank fields described above in Figure 2.5. When searching for terms in a particular
field, some knowledge of the terms that are in the database can be helpful. To assist in find-
ing suitable terms, for each field, ENTREZ provides a list of index entries.

For a protein search, for example, current choices for fields include accession (number),
all fields, author name, E. C. number, issue, journal name, keyword, modification date,
organism, page number, primary accession (number), properties, protein name, publica-
tion date (of reference), seqID string, sequence length, substance name, text word, title
word, volume, and sequence ID. Similar fields are shown for the DNA database search.
Later, the results of searches in separate fields may be combined to narrow down the
choices. The number of terms to be searched for and the field to be searched are the main
decisions to be made. In doing so, keep in mind that it is important to be as specific as pos-
sible, or else there may be a great many possibilities. Thus, knowing accession number,
protein name, or name of gene should be enough to find the required entry quickly. If the
same protein has been sequenced in several organisms, providing an organism name is also
helpful. When the chosen search terms and fields have been decided and submitted, a
database comprising all of the currently available sequences (called the nonredundant or
NR database) will be searched. Other database selections may also be made.

The program returns the number of matches found and provides an opportunity to nar-
row this list by including more terms. When the number of matching sequences has been
narrowed to a reasonable number, the sequence may be retrieved in a chosen format in
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Figure 2.15. ENTREZ Web form for protein database search. The window shown is from the protein database search option
at http://www.ncbi.nlm.nih.gov/Entrez/. The search term input window is activated by clicking, one or more search terms are
typed, and the “Go” button is clicked (top window). Batch ENTREZ, available from the main ENTREZ Web page, provides
a method for retrieving large numbers of sequences at the same time. A particular field (e.g., gene name, organism, protein
name) in the GenBank entry can also be searched, by using the “Limits” option. The request is then sent to a server in which
all key words in the sequence entries have been indexed, as in looking up a word in the index of a book. GenBank entries with
all of the requested terms can be readily identified because the index will indicate in which entry they are all found. The
machine returns the number of matches found. Clicking on the retrieve button leads to a list of the found items. Those items
chosen are retrieved in a new window format.

several straightforward steps. It is important to look through the sequences to locate the
one intended. There may be several different copies of the sequence because it may have
been sequenced from more than one organism, or the sequence may be a mutant sequence,
a particular clone, or a fragment. There is no simple way to find the correct sequence with-
out manually checking the information provided in each sequence, but this usually takes
only a short time. Before leaving ENTREZ, it is often useful to check for sequence database
entries that are similar to the one of interest, called “neighbors” by ENTREZ. The expand-
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ed query searches other database entries of interest, such as the same protein in another
organism, a large chromosomal sequence that includes the gene, or members of the same
gene family. While visiting the site, note that ENTREZ has been adapted to search through
a number of other biological databases, and also through Medline, and these searches are
available from the initial ENTREZ Web page.

Retrieving a Specific Sequence

Even following the above instructions, it can be difficult to retrieve the sequence of a
specific gene or protein simply because of the sheer number of sequences in the Gen-
Bank database and the complex problem of indexing them. For projects that require
the most currently available sequences, the NR databases should be searched. Other
projects may benefit from the availability of better curated and annotated protein
sequence databases, including PIR and SwissProt. The genomic databases described
in Chapter 10 can also provide the sequence of a particular gene or protein. Protein
sequences in the Genpro database are generated by automatic translation of DNA
sequences. When read from cDNA copies of mRNA sequences, they provide a reli-
able sequence, given a certain amount of uncertainty as to the translational start site.
Many protein sequences are now predicted by translation of genomic sequences,
requiring a prediction of exons, a somewhat error-prone step described in more
detail in Chapter 8. The origin of protein sequence entries thus needs to be deter-
mined, and if they are not from a cDNA sequence, it may be necessary to obtain and
sequence a cDNA copy of the gene.
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INTRODUCTION

PAIR-WISE SEQUENCE ALIGNMENT IS a very large topic to cover as one chapter. Thus,
starting with this chapter, more detailed discussions of topics, and information on subjects
of more peripheral interest, will be available from the Web site for this book. This site is
organized according to the same subject headings as this chapter and can be found at
http://www.bioinformaticsonline.org. In addition, starting with this chapter, procedural
flowcharts will appear at the beginning of the Methods section of most chapters to provide
an overview of the methods of analysis. This chapter discusses pair-wise sequence align-
ment. Multiple sequence alignment is discussed in Chapter 4.

DEFINITION OF SEQUENCE ALIGNMENT

Sequence alignment is the procedure of comparing two (pair-wise alignment) or more
(multiple sequence alignment) sequences by searching for a series of individual characters
or character patterns that are in the same order in the sequences. Two sequences are aligned
by writing them across a page in two rows. Identical or similar characters are placed in the
same column, and nonidentical characters can either be placed in the same column as a mis-
match or opposite a gap in the other sequence. In an optimal alignment, nonidentical char-
acters and gaps are placed to bring as many identical or similar characters as possible into
vertical register. Sequences that can be readily aligned in this manner are said to be similar.

There are two types of sequence alignment, global and local, and they are illustrated
below in Figure 3.1. In global alignment, an attempt is made to align the entire sequence,
using as many characters as possible, up to both ends of each sequence. Sequences that are
quite similar and approximately the same length are suitable candidates for global align-
ment. In local alignment, stretches of sequence with the highest density of matches are
aligned, thus generating one or more islands of matches or subalignments in the aligned
sequences. Local alignments are more suitable for aligning sequences that are similar along
some of their lengths but dissimilar in others, sequences that differ in length, or sequences
that share a conserved region or domain.

Global Alignment

For the two hypothetical protein sequence fragments in Figure 3.1, the global alignment is
stretched over the entire sequence length to include as many matching amino acids as pos-
sible up to and including the sequence ends. Vertical bars between the sequences indicate

LGPSSKQTGKGS-SRIWDN

| | | | | | | Global alignment
LN-ITTKSAGKGAIMRLGDA

GKG
| | | Local alignment
GKG

Figure 3.1. Distinction between global and local alignments of two sequences.
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Local Alignment

the presence of identical amino acids. Although there is an obvious region of identity in
this example (the sequence GKG preceded by a commonly observed substitution of T for
A), a global alignment may not align such regions so that more amino acids along the
entire sequence lengths can be matched.

In a local alignment, the alignment stops at the ends of regions of identity or strong simi-
larity, and a much higher priority is given to finding these local regions (Fig. 3.1) than to
extending the alignment to include more neighboring amino acid pairs. Dashes indicate
sequence not included in the alignment. This type of alignment favors finding conserved
nucleotide patterns, DNA sequences, or amino acid patterns in protein sequences.

SIGNIFICANCE OF SEQUENCE ALIGNMENT

Sequence alignment is useful for discovering functional, structural, and evolutionary infor-
mation in biological sequences. It is important to obtain the best possible or so-called
“optimal” alignment to discover this information. Sequences that are very much alike, or
“similar” in the parlance of sequence analysis, probably have the same function, be it a reg-
ulatory role in the case of similar DNA molecules, or a similar biochemical function and
three-dimensional structure in the case of proteins. Additionally, if two sequences from
different organisms are similar, there may have been a common ancestor sequence, and the
sequences are then defined as being homologous. The alignment indicates the changes that
could have occurred between the two homologous sequences and a common ancestor
sequence during evolution, as shown in Figure 3.2.

With the advent of genome analysis and large-scale sequence comparisons, it becomes
important to recognize that sequence similarity may be an indicator of several possible

Sequence A Sequence B

X steps y steps

Figure 3.2. The evolutionary relationship between two similar sequences and a possible common
ancestor sequence that would make the sequences homologous. The number of steps required to
change one sequence to the other is the evolutionary distance between the sequences, and is also the
sum of the number of steps to change the common ancestor sequence into one of the sequences (x)
plus the number of steps required to change the common ancestor into the other (y). The common
ancestor sequence is not available, such that x and y cannot be calculated; only x + y is known. By
the simplest definition, the distance x + y is the number of mismatches in the alignment (gaps are
not usually counted), as illustrated in Fig. 1.3. In a phylogenetic analysis of three or more similar
sequences, the separate distances from the ancestor can be estimated, as discussed in Chapter 6.
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types of ancestor relationships, or there may be no ancestor relationship at all, as illustrat-
ed in Figure 3.3. For example, new gene evolution is often thought to occur by gene dupli-
cation, creating two tandem copies of the gene, followed by mutations in these copies. In
rare cases, new mutations in one of the copies provide an advantageous change in func-
tion. The two copies may then evolve along separate pathways. Although the resulting sep-
aration of function will generate two related sequence families, sequences among both
families will still be similar due to the single gene ancestor. In addition, genetic rearrange-

A.
Il
Gene
duplication |

/\EpeCiation Gene dup|ication

Species | Species Il

C. I D. "

Figure 3.3. Origins of genes having a similar sequence. Shown are illustrative examples of gene evo-
lution. In A, a duplication of gene a to produce tandem genes al and a2 in an ancestor of species I
and II has occurred. Separation of the duplicated region by speciation gives rise to two separate
branches, shown in B as blue and red. al in species I and al in species II are orthologous because
they share a common ancestor. Similarly, a2 in species I and a2 in species II are orthologous. How-
ever, the al genes are paralogous to the a2 genes because they arose from a gene duplication event,
indicated in A. If two or more copies of a gene family have been separated by speciation in this fash-
ion, they tend to all undergo change as a group, due to gene conversion-type mechanisms (Li and
Graur 1991). In C, a gene in species I and a different gene in species II have converged on the same
function by separate evolutionary paths. Such analogous genes, or genes that result from convergent
evolution, include proteins that have a similar active site but within a different backbone sequence.
In D, genes in species I and II are related through the transfer of genetic material between species,
even though the two species are separated by a long evolutionary distance. Although the transfer is
shown between outer branches of the evolutionary tree, it could also have occurred in lower-down
branches, thus giving rise to a group of organisms with the transferred gene. Such genes are known
as xenologous or horizontally transferred genes. Transfer of the P transposable elements between
Drosophila species is a prime example of such horizontal transfer (Kidwell 1983). Horizontal trans-
fer also is found in bacterial genomes and can be traced as a regional variation in base composition
within chromosomes. A similar type of transfer is that of the small ribosomal RNA subunits of mito-
chondria and chloroplasts, which originated from early prokaryotic organisms. Symbiotic relation-
ships between organisms may be a precursor event leading to such exchanges. Other rearrangements
within the genome (not shown) may produce chimeric genes comprising domains of genes that
were evolving separately.
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Genes that are descend-
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ments can reassort domains in proteins, leading to more complex proteins with an evolu-
tionary history that is difficult to reconstruct (Henikoff et al. 1997).

Evolutionary theory provides terms that may be used to describe sequence relationships.
Homologous genes that share a common ancestry and function in the absence of any evi-
dence of gene duplication are called orthologs. When there is evidence for gene duplica-
tion, the genes in an evolutionary lineage derived from one of the copies and with the same
function are also referred to as orthologs. The two copies of the duplicated gene and their
progeny in the evolutionary lineage are referred to as paralogs. In other cases, similar
regions in sequences may not have a common ancestor but may have arisen independent-
ly by two evolutionary pathways converging on the same function, called convergent evo-
lution. There are some remarkable examples in protein structures. For instance, although
the enzymes chymotrypsin and subtilisin have totally different three-dimensional struc-
tures and folds, the active sites show similar structural features, including histidine (H),
serine (S), and aspartic acid (D) in the catalytic sites of the enzymes (for discussion, see
Branden and Tooze 1991). Additional examples are given in Chapter 10 (p. 509). In such
cases, the similarity will be highly localized. Such sequences are referred to as analogous
(Fitch 1970). A closer examination of alignments can help to sort out possible evolution-
ary origins among similar sequences (Tatusov et al. 1997).

As pointed out by Fitch and Smith (1983), sequences can be either homologous or non-
homologous, but not in between. The genetic rearrangements referred to above can give
rise to chimeric genes, in which some regions are homologous and others are not. Refer-
ring to the entire sequences as homologous in such situations leads to an inaccurate and
incomplete description of the sequence lineage.

Another complication in tracing the origins of similar sequences is that individual genes
may not share the same evolutionary origin as the rest of the genome in which they
presently reside. Genetic events such as symbioses and viral-induced transduction can
cause horizontal transfer of genetic material between unrelated organisms. In such cases,
the evolutionary history of the transferred sequences and that of the organisms will be dif-
ferent. Again, with the capability of detecting such events in the genomes of organisms
comes the responsibility to describe these changes with the correct evolutionary terminol-
ogy. In this case, the sequences are xenologous (Gray and Fitch 1983). Recently, Lawrence
and Ochman (1997) have shown that horizontal transfer of genes between species is as
common in enteric bacteria, if not more common, than mutation. Describing such
changes requires a careful description of sequence origins. As discussed in Chapters 6 and
10, phylogenetic and other types of sequence analyses help to uncover such events.

OVERVIEW OF METHODS OF SEQUENCE ALIGNMENT

Alignment of Pairs of Sequences

Alignment of two sequences is performed using the following methods:

1. Dot matrix analysis

2. The dynamic programming (or DP) algorithm

3. Word or k-tuple methods, such as used by the programs FASTA and BLAST, described
in Chapter 7.

Unless the sequences are known to be very much alike, the dot matrix method should
be used first, because this method displays any possible sequence alignments as diagonals
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on the matrix. Dot matrix analysis can readily reveal the presence of insertions/deletions
and direct and inverted repeats that are more difficult to find by the other, more automat-
ed methods. The major limitation of the method is that most dot matrix computer pro-
grams do not show an actual alignment.

The dynamic programming method, first used for global alignment of sequences by
Needleman and Wunsch (1970) and for local alignment by Smith and Waterman (1981a),
provides one or more alignments of the sequences. An alignment is generated by starting
at the ends of the two sequences and attempting to match all possible pairs of characters
between the sequences and by following a scoring scheme for matches, mismatches, and
gaps. This procedure generates a matrix of numbers that represents all possible alignments
between the sequences. The highest set of sequential scores in the matrix defines an opti-
mal alignment. For proteins, an amino acid substitution matrix, such as the Dayhoff per-
cent accepted mutation matrix 250 (PAM250) or blosum substitution matrix 62
(BLOSUMBS62) is used to score matches and mismatches. Similar matrices are available for
aligning DNA sequences.

The dynamic programming method is guaranteed in a mathematical sense to provide
the optimal (very best or highest-scoring) alignment for a given set of user-defined vari-
ables, including choice of scoring matrix and gap penalties. Fortunately, experience with
the dynamic programming method has provided much help for making the best choices,
and dynamic programming has become widely used. The dynamic programming method
can also be slow due to the very large number of computational steps, which increase
approximately as the square or cube of the sequence lengths. The computer memory
requirement also increases as the square of the sequence lengths. Thus, it is difficult to use
the method for very long sequences. Fortunately, computer scientists have greatly reduced
these time and space requirements to near-linear relationships without compromising the
reliability of the dynamic programming method, and these methods are widely used in the
available dynamic programming applications to sequence alignment. Other shortcuts have
been developed to speed up the early phases of finding an alignment.

The word or k-tuple methods are used by the FASTA and BLAST algorithms (see Chap-
ter 7). They align two sequences very quickly, by first searching for identical short stretch-
es of sequences (called words or k-tuples) and by then joining these words into an align-
ment by the dynamic programming method. These methods are fast enough to be suitable
for searching an entire database for the sequences that align best with an input test
sequence. The FASTA and BLAST methods are heuristic; i.e., an empirical method of com-
puter programming in which rules of thumb are used to find solutions and feedback is
used to improve performance. However, these methods are reliable in a statistical sense,
and usually provide a reliable alignment.

Multiple Sequence Alignment

From a multiple alignment of three or more protein sequences, the highly conserved
residues that define structural and functional domains in protein families can be identified.
New members of such families can then be found by searching sequence databases for
other sequences with these same domains. Alignment of DNA sequences can assist in find-
ing conserved regulatory patterns in DNA sequences. Despite the great value of multiple
sequence alignments, obtaining one presents a very difficult algorithmic problem. The
methods that have been devised are discussed in Chapter 4.
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DOT MATRIX SEQUENCE COMPARISON

A dot matrix analysis is primarily a method for comparing two sequences to look for pos-
sible alignment of characters between the sequences, first described by Gibbs and McIntyre
(1970). The method is also used for finding direct or inverted repeats in protein and DNA
sequences, and for predicting regions in RNA that are self-complementary and that, there-
fore, have the potential of forming secondary structure. Every laboratory that does
sequence analysis should have at least one dot matrix program available. In choosing a pro-
gram, look for as many of the features described below as possible. The dot matrix should
be visible on the computer terminal, thus providing an interactive environment so that dif-
ferent types of analyses may be tried. Use of colored dots can enhance the detection of
regions of similarity (Maizel and Lenk 1981). Additional descriptions of the dot matrix
method have appeared elsewhere (Doolittle 1986; States and Boguski 1991). The examples
given below use the dot matrix module of DNA Strider (version 1.3) on a Macintosh com-
puter. The program DOTTER has interactive features for the UNIX X-Windows environ-
ment (Sonnhammer and Durbin 1995; http://www.cgr.ki.se/cgr/groups/sonnhammer/
Dotter.html). The Genetics Computer Group programs COMPARE and DOTPLOT also
perform a dot matrix analysis. Although not a dot matrix method, the program PLALIGN
in the FASTA suite may be used to display the alignments found by the
dynamic programming method between two sequences on a graph (http://fasta.bioch.
virginia.edu/fasta/fasta_list.html; Pearson 1990). A dot matrix program that may be used
with a Web browser is described in Junier and Pagni (2000) (http://www.isrec.isb-
sib.ch/java/ dotlet/Dotlet.html).

1. This chart assumes that both sequences are protein sequences or that both are DNA sequences. If one
is a DNA sequence, that sequence should be translated and then aligned with the second, protein
sequence.

2. The local alignment program, e.g., LALIGN or BESTFIT, usually has a recommended scoring matrix
and gap penalty combination. It is important to make sure that the combination is one that is known
to produce a confined, local alignment with random (or scrambled) sequences. A global alignment
program may also be used with sequences of approximately the same length.

3. For protein sequences, a high-quality alignment is one that includes most of each sequence, a signifi-
cant proportion (e.g., 25%) of identities throughout the alignment, multiple examples of conservative
substitutions (chemically and structurally similar amino acids), and relatively few gaps confined to
specific regions of the alignment. A poor-quality alignment includes only a portion of the sequences,
has few and widely dispersed identities and conservative substitutions, tends to include regions of low
complexity (repeats of same amino acid), and includes gaps that are obviously necessary to obtain the
alignment. For DNA sequences, a significant alignment must include long runs of identities and few
gaps. For two random or unrelated DNA sequences of length 100 and normal composition (0.25 of
each base), the longest run of matches that can be expected is 6 or 7 (see text). A clue as to the signif-
icance of an alignment may also be obtained by using an alignment program that gives multiple alter-
native alignments, e.g., LALIGN. The first alignment found, which will be the highest scoring, should
have a much higher score than the following ones, which are designed so that the same sequence posi-
tions will not be aligned a second time. Hence, these subsequent alignments should usually be random.

4. The result of this analysis can be a guide for the test of significance that follows. In the test described
in this chapter, the second sequence is scrambled and realigned with the first sequence. Scrambling can
be done at the level of the individual nucleotide or amino acid, or at the level of words by keeping the
composition of short stretches of sequence intact.
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Pair-wise Sequence Comparison

The major advantage of the dot matrix method for finding sequence alignments is that all
possible matches of residues between two sequences are found, leaving the investigator the
choice of identifying the most significant ones. Then, sequences of the actual regions that
align can be detected by using one of two other methods for performing sequence align-
ments, e.g., dynamic programming. These methods are automatic and usually show one
best or optimal alignment, even though there may be several different, nearly alike align-
ments. Alignments generated by these programs can be compared to the dot matrix align-
ment to determine whether the longest regions are being matched and whether insertions
and deletions are located in the most reasonable places.

In the dot matrix method of sequence comparison, one sequence (A) is listed across the
top of a page and the other sequence (B) is listed down the left side, as illustrated in Fig-
ures 3.4 and 3.5. Starting with the first character in B, one then moves across the page keep-
ing in the first row and placing a dot in any column where the character in A is the same.
The second character in B is then compared to the entire A sequence, and a dot is placed
in row 2 wherever a match occurs. This process is continued until the page is filled with
dots representing all the possible matches of A characters with B characters. Any region of
similar sequence is revealed by a diagonal row of dots. Isolated dots not on the diagonal
represent random matches that are probably not related to any significant alignment.

Detection of matching regions may be improved by filtering out random matches in a
dot matrix. Filtering is achieved by using a sliding window to compare the two sequences.
Instead of comparing single sequence positions, a window of adjacent positions in the two
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Figure 3.4. Dot matrix analysis of DNA sequences encoding phage N\ cI (vertical sequence) and
phage P22 ¢2 (horizontal sequence) repressors. This analysis was performed using the dot matrix dis-
play of the Macintosh DNA sequence analysis program DNA Strider, vers. 1.3. The window size was
11 and the stringency 7, meaning that a dot is printed at a matrix position only if 7 out of the next
11 positions in the sequences are identical.
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Figure 3.5. Dot matrix analysis of the amino acid sequences of the phage A ¢I (horizontal sequence)
and phage P22 2 (vertical sequence) repressors performed as described in Fig. 3.4. The window size
and stringency were both 1.

sequences is compared at the same time, and a dot is printed on the page only if a certain
minimal number of matches occur. The window starts at the positions in A and B to be
compared and includes characters in a diagonal line going down and to the right, compar-
ing each pair in turn, as in making an alignment. A larger window size is generally used for
DNA sequences than for protein sequences because the number of random matches is
much greater due to the use of only four DNA symbols as compared to 20 amino acid sym-
bols. A typical window size for DNA sequences is 15 and a suitable match requirement in
this window is 10. For protein sequences, the matrix is often not filtered, but a window size
of 2 or 3 and a match requirement of 2 will highlight matching regions. If two proteins are
expected to be related but to have long regions of dissimilar sequence with only a small
proportion of identities, such as similar active sites, a large window, e.g., 20, and small
stringency, e.g., 5, should be useful for seeing any similarity. Identification of sequence
alignments by the dot matrix method can be aided by performing a count of dots in all pos-
sible diagonal lines through the matrix to determine statistically which diagonals have the
most matches, and by comparing these match scores with the results of random sequence
comparisons (Gibbs and McIntyre 1970; Argos 1987).

An example of a dot matrix analysis between the DNA sequences that encode the
Escherichia coli phage N cI and phage P22 c2 repressor proteins is shown in Figure 3.4. With
a window of 1 and stringency of 1, there is so much noise that no diagonals can be seen,
but, as shown in the figure, with a window of 11 and a stringency of 7, diagonals appear in
the lower right. The analysis reveals that there are regions of similarity in the 3" ends of the
coding regions, which, in turn, suggests similarity in the carboxy-terminal domains of the
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encoded repressors. Note that sequential diagonals in matrix C do not line up exactly, indi-
cating the presence of extra nucleotides in one sequence (the lambda cI gene on the verti-
cal scale). The diagonals shown in the lower part of the matrix reveal a region of sequence
similarity in the carboxy-terminal domains of the proteins. A small insertion in the cI pro-
tein that is approximately in the middle of this region and shifts the diagonal slightly
downward accounts for this pattern.

An example of a dot matrix analysis between the amino acid sequences of the same two
E. coli phage lambda cI and phage P22 c2 repressor proteins is shown in Figure 3.5. This
matrix was filtered by a window of 1 and a stringency of 1. As found with the DNA
sequence alignment of the corresponding genes, diagonals shown in the lower part of the
matrix reveal a region of sequence similarity in the carboxy-terminal domains of the pro-
teins. The small insertion in the cI protein approximately in the middle of this region
which shifts the diagonal slightly downward and which is also observed in the DNA align-
ment of these corresponding genes is also visible. Note that these windows are much small-
er than required for DNA sequence comparisons due to the greater number of possible
symbols (20 amino acids) and therefore fewer random matches.

In conclusion, for DNA sequence dot matrix comparisons, use long windows and high
stringencies, e.g., 7 and 11, 11 and 15. For protein sequences, use short windows, e.g., 1 and
1, for window and stringency, respectively, except when looking for a short domain of par-
tial similarity in otherwise not-similar sequences. In this case, use a longer window and a
small stringency, e.g., 15 and 5, for window and stringency, respectively.

There are three types of variations in the analysis of two protein sequences by the dot
matrix method. First, chemical similarity of the amino acid R group or some other feature
for distinguishing amino acids may be used to score similarity. Second, a symbol compar-
ison table such as the PAM250 or BLOSUMG62 tables may be used (States and Boguski
1991). These tables provide scores for matches based on their occurrence in aligned pro-
tein families. These tables are discussed later in this chapter (pages 78 and 85, respective-
ly). When these tables are used, a dot is placed in the matrix only if a minimum similarity
score is found. These table values may also be used in a sliding window option, which aver-
ages the score within the window and prints a dot only above a certain average score. Final-
ly, several different matrices can be made, each with a different scoring system, and the
scores can be averaged. This method should be useful for aligning more distantly related
proteins. The scores of each possible diagonal through the matrix are then calculated, and
the most significant ones are identified and shown on a computer screen (Argos 1987).

Sequence Repeats

Dot matrix analysis can also be used to find direct and inverted repeats within sequences.
Repeated regions in whole chromosomes may be detected by a dot matrix analysis, and an
interactive Web-based program has been designed for showing these regions at increasing
levels of detail (http://genome-www.stanford.edu/Saccharomyces/SSV/viewer_start.html).
Direct repeats may also be found by performing sequence alignments with dynamic pro-
gramming methods (see next section). When used to align a sequence with itself, the pro-
gram LALIGN will show alternative possible alignments between the repeated regions;
PLALIGN will plot these alignments on a graph similar in appearance to a dot matrix (see
http://fasta.bioch.virginia.edu/fasta/fasta-list.html; Pearson 1990). Here, the sequence is
analyzed against itself and the presence of repeats is revealed by diagonal rows of dots. A
Bayesian method for finding direct repeats is described on page 122. Inverted repeats
require special handling and are discussed in Chapters 5 and 8. In Figure 3.6, an example
of such an analysis for direct repeats in the amino acid sequence of the human low-densi-
ty lipoprotein (LDL) receptor is shown. A list of additional proteins with direct repeats is
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Figure 3.6. Dot matrix analysis of the human LDL receptor against itself using DNA Strider, vers. 1.3, on a Macintosh com-
puter. (A) Window 1, Stringency 1. There is a diagonal line from upper left to lower right due to the fact that the same
sequence is being compared to itself. The rest of the graph is symmetrical about this line. Other (quite hard to see) lines on
either side of this diagonal are also present. These lines indicate repeated sequences perhaps 50 or so long. Patches of high-
density dots, e.g., at the position corresponding to position 800 in both sequences representing short repeats of the same
amino acid, are also seen. (B) Window 23, Stringency 7. The occurrence of longer repeats may be found by using this sliding
window. In this example, a dot is placed on the graph at a given position only if 7/23 of the residues are the same. These choic-
es are arbitrary and several combinations may need to be tried. Many repeats are seen in the first 300 positions. A pattern of
approximate length 20 and at position 30 is repeated at least six times at positions 70, 100, 140, 180, 230, and 270. Two longer,
overlapping repeats of length 70 are also found in this same region starting at positions 70 and 100, and repeated at position
200. Since few of these diagonals remain in new analyses at 11/23 (stringency/window) and all disappear at 15/23, they are not
repeats of exactly the same sequence but they do represent an average of about 7/23 matches with no deletions or insertions.
The information from the above dot matrix may be used as a basis for listing the actual amino acid repeats themselves by one
of the other methods for sequence alignment described below.
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given in Doolittle (1986, p. 50), and repeats are also discussed in States and Boguski (1991,
p-109). As discussed in Chapters 9 and 10, there are many examples of proteins composed
of multiple copies of a single domain.

Repeats of a Single Sequence Symbol

A dot matrix analysis can also reveal the presence of repeats of the same sequence charac-
ter many times. These repeats become apparent on the dot matrix of a protein sequence
against itself as horizontal or vertical rows of dots that sometimes merge into rectangular
or square patterns. Such patterns are particularly apparent in the right and lower regions
of the dot matrix of the human LDL receptor shown in Figure 3.6 but are also seen
throughout the rest of the matrix. The occurrence of such repeats of the same sequence
character increases the difficulty of aligning sequences because they create alignments with
artificially high scores. A similar problem occurs with regions in which only a few sequence
characters are found, called low-complexity regions. Programs that automatically detect
and remove such regions from the analysis so that they do not interfere with database sim-
ilarity searches are discussed in Chapter 7.

DYNAMIC PROGRAMMING ALGORITHM FOR SEQUENCE ALIGNMENT

Dynamic programming is a computational method that is used to align two protein or
nucleic acid sequences. The method is very important for sequence analysis because it pro-
vides the very best or optimal alignment between sequences. Programs that perform this
analysis on sequences are readily available, and there are Web sites that will perform the
analysis. However, the method requires the intelligent use of several variables in the pro-
gram. Thus, it is important to understand how the program works in order to make
informed choices of these variables.

The method compares every pair of characters in the two sequences and generates an
alignment. This alignment will include matched and mismatched characters and gaps in
the two sequences that are positioned so that the number of matches between identical or
related characters is the maximum possible. The dynamic programming algorithm pro-
vides a reliable computational method for aligning DNA and protein sequences. The
method has been proven mathematically to produce the best or optimal alignment
between two sequences under a given set of match conditions. Optimal alignments provide
useful information to biologists concerning sequence relationships by giving the best pos-
sible information as to which characters in a sequence should be in the same column in an
alignment, and which are insertions in one of the sequences (or deletions on the other).
This information is important for making functional, structural, and evolutionary predic-
tions on the basis of sequence alignments.

Both global and local types of alignments may be made by simple changes in the basic
dynamic programming algorithm. A global alignment program is based on the Needle-
man-Wunsch algorithm, and a local alignment program on the Smith-Waterman algo-
rithm, described below (p. 72). The predicted alignment will be given a score that gives the
odds of obtaining the score between sequences known to be related to that obtained by
chance alignment of unrelated sequences. There is a method to calculate whether or not an
alignment obtained this way is statistically significant. One of the sequences may be scram-
bled many times and each randomly generated sequence may be realigned with the second
sequence to demonstrate that the original alignment is unique. The statistical significance
of alignment scores is discussed in detail below (p. 96).
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Another feature of the dynamic programming algorithm is that the alignments obtained
depend on the choice of a scoring system for comparing character pairs and penalty scores
for gaps. For protein sequences, the simplest system of comparison is one based on iden-
tity. A match in an alignment is only scored if the two aligned amino acids are identical.
However, one can also examine related protein sequences that can be aligned easily and
find which amino acids are commonly substituted for each other. The probability of a sub-
stitution between any pair of the 20 amino acids may then be used to produce alignments.
Recent improvements and experience with the dynamic programming programs and the
scoring systems have greatly simplified their use. These enhancements are discussed below
and at http://www.bioinformaticsonline.org.

It is important to recognize that several different alignments may provide approximate-
ly the same alignment score; i.e., there are alignments almost as good as the highest-scor-
ing one reported by the alignment program. Some programs, e.g., LALIGN, provide sever-
al entirely different alignments with different sequence positions matched that can be
compared to improve confidence in the best-scoring one. Alignment programs have also
been greatly improved in algorithmic design and performance. With the advent of faster
machines, it is possible to do a dynamic programming alignment between a query
sequence and an entire sequence database and to find the similar sequences in several min-
utes. Dynamic programming has also been used to perform multiple sequence alignment,
but only for a small number of sequences because the complexity of the calculations
increases substantially for more than two sequences. Sequence alignment programs are
available as a part of most sequence analysis packages, such as the widely used Genetics
Computer Group GAP (global alignment) and BESTFIT (local alignment) programs.
Sequences can also be pasted into a text area on a guest Web page on a remote host
machine that will perform a dynamic programming alignment, and there are also versions
of alignment programs that will run on a microcomputer (Table 3.1).

In deciding to perform a sequence alignment, it is important to keep the goal of the
analysis in mind. Is the investigator interested in trying to find out whether two proteins
have similar domains or structural features, whether they are in the same family with a
related biological function, or whether they share a common ancestor relationship? The
desired objective will influence the way the analysis is done. There are several decisions to
be made along the way, including the type of program, whether to produce a global or local
alignment, the type of scoring matrix, and the value of the gap penalties to be used. There
are a very large number of amino acid scoring matrices in use (see book Web site), some
much more popular than others, and these scoring matrices are designed for different pur-
poses. Some, such as the Dayhoff PAM matrices, are based on an evolutionary model of
protein change, whereas others, such as the BLOSUM matrices, are designed to identify
members of the same family. Alignments between DNA sequences require similar kinds of
considerations. It is often worth the effort to try several approaches to find out which
choice of scoring system and gap penalty give the most reasonable result. Fortunately, most
alignment programs come with a recommended scoring matrix and gap penalties that are
useful for most situations. A more recent development (see Bayesian methods discussed on
p. 124) is the simultaneous use of a set of scoring matrices and gap penalties by a method
that generates the most probable alignments (see Table 3.1). The final choice as to the most
believable alignment is up to the investigator, subject to the condition that reasonable deci-
sions have been made regarding the methods used.

For sequences that are very similar, e.g., >95%, the sequence alignment is usually quite
obvious, and a computer program may not even be needed to produce the alignment. As
the sequences become less and less similar, the alignment becomes more difficult to pro-
duce and one is less confident of the result. For protein sequences, similarity can still be
recognized down to a level of approximately 25% amino acid identity. At this level of iden-
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Table 3.1. Web sites for alignment of sequence pairs

Name of site Web address Reference
Bayes block aligner http://www.wadsworth.org/res&res/bioinfo Zhu et al. (1998)
BCM Search Launcher:
Pairwise sequence alignment® http://dot.imgen.bcm.tmc.edu:9331/seq- see Web site
search/alignment.html
SIM—Local similarity program for finding  http://www.expasy.ch/tools/sim.html Huang et al. (1990);
alternative alignments Huang and Miller (1991);
Pearson and Miller (1992)
Global alignment programs (GAP, NAP) http://genome.cs.mtu.edu/align/align.html Huang (1994)
FASTA program suite” http://fasta.bioch.virginia.edu/fasta/fasta_list.html ~ Pearson and Miller (1992);
Pearson (1996)
BLAST 2 sequence alignment (BLASTN, http://www.ncbi.nlm.nih.gov/gorf/bl2.html Altschul et al. (1990)
BLASTP)*
Likelihood-weighted sequence alignment http://www.ibc.wustl.edu/servive/lwa.html see Web site
(lwa)?

* This server provides access to a number of Web sites offering pair-wise alignments between nucleic acid sequences, protein
sequences, or between a nucleic acid and a protein sequence.

The FASTA algorithm normally used for sequence database searches (see Chapter 7) provides an alternative method to dynamic
programming for producing an alignment between sequences. Briefly, all short patterns of a certain length are located in both
sequences. If multiple patterns are found in the same order in both sequences, these provide the starting point for an alignment by the
dynamic programming algorithm. Older versions of FASTA performed a global alignment, but more recent versions perform a local
alignment with statistical evaluations of the scores. The program PLFASTA in the FASTA program suite provides a plot of the best
matching regions, much like a dot matrix analysis, and thus gives an indication of alternative alignments. The FASTA suite is also avail-
able from Genestream at http://vega.igh.cnrs.fr/. Programs include ALIGN (global, Needleman-Wunsch alignment), LALIGN (local,
Smith-Waterman alignment), LALIGNO (Smith-Waterman alignment, no end gap penalty), FASTA (local alignment, FASTA
method), and PRSS (local alignment with scrambled copies of second sequence to do statistical analysis). Versions of these programs
that run with a command-line interface on MS-DOS and Macintosh microcomputers are available by anonymous FTP from ftp.vir-
ginia.edu/pub/fasta.

¢ The BLAST algorithm normally used for database similarity searches (Chapter 7) can also be used to align two sequences.
4 A description of the probabilistic method of aligning two sequences is described in Durbin et al. (1998) and Chapter 4. A related
topic, hidden Markov models for multiple sequence alignments, is discussed in Chapter 4.

tity, the relative numbers of mismatched amino acids and gaps in the alignment have to be
decided empirically and a decision made as to which gap penalties work the best for a given
scoring matrix. Alignment of sequences at this level of identity is called the “twilight zone”
of sequence alignment by Doolittle (1981). The alignment program may provide a quite
convincing alignment, which suggests that the two sequences are homologous. The statis-
tical significance of the alignment score may then be evaluated, as described later in this
chapter.

Description of the Algorithm

Alignment of two sequences without allowing gaps requires an algorithm that performs a
number of comparisons roughly proportional to the square of the average sequence length,
as in a dot matrix comparison. If the alignment is to include gaps of any length at any posi-
tion in either sequence, the number of comparisons that must be made becomes astro-
nomical and is not achievable by direct comparison methods. Dynamic programming is a
method of sequence alignment that can take gaps into account but that requires a man-
ageable number of comparisons.

The method of sequence alignment by dynamic programming and the proof that the
method provides an optimal (highest scoring) alignment are illustrated in Figures 3.7 and
3.8. To understand how the method works, we must first recall what is meant by an align-
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sequence 1 VvV D S - C Y

sequence 2 V E S5 L C Y

SCORE 4 2 4 -11 9 7 SCORE = SUM OF AMINO ACID PAIR SCORES
(26) MINUS SINGLE GAP PENALTY (11) = 15

Figure 3.7. Example of scoring a sequence alignment with a gap penalty. The individual alignment scores are taken from an
amino acid substitution matrix.

ment, using the two protein sequences shown in Figure 3.7 as an example. The two
sequences will be written across the page, one under the other, the object being to bring as
many amino acids as possible into register. In some regions, amino acids in one sequence
will be placed directly below identical amino acids in the second. In other regions, this pro-
cess may not be possible and nonidentical amino acids may have to be placed next to each
other, or else gaps must be introduced into one of the sequences. Gaps are added to the
alignment in a manner that increases the matching of identical or similar amino acids at
subsequent portions in the alignment. Ideally, when two similar protein sequences are
aligned, the alignment should have long regions of identical or related amino acid pairs
and very few gaps. As the sequences become more distant, more mismatched amino acid
pairs and gaps should appear.

The quality of the alignment between two sequences is calculated using a scoring system
that favors the matching of related or identical amino acids and penalizes for poorly
matched amino acids and gaps. To decide how to score these regions, information on the
types of changes found in related protein sequences is needed. These changes may be
expressed by the following probabilities: (1) that a particular amino acid pair is found in
alignments of related proteins; (2) that the same amino acid pair is aligned by chance in
the sequences, given that some amino acids are abundant in proteins and others rare; and
(3) that the insertion of a gap of one or more residues in one of the sequences (the same as
an insertion of the same length in the other sequence), thus forcing the alignment of each
partner of the amino acid pair with another amino acid, would be a better choice. The ratio
of the first two probabilities is usually provided in an amino acid substitution matrix. Each

1. SCORE OF NEW SCORE OF PREVIOUS + SCORE OF NEW

ALIGNMENT ALIGNMENT (A) AT.IGNED PAIR
vV b 8 -~ C ¥ v b 8§ - C Y
V E 8 L C ¥ vV E 8§ L ¢ Y
15 = 8 + 7

II. SCORE OF SCORE OF PREVIOUS + SCORE OF NEW

ALIGNMENT (A) ALIGNMENT (B) ALIGNED PAIR
v b 8§ - C v D § - C
vV E 85 L C V E 8§ L C
8 = -1 + 9

ITI. REPEAT REMOVING ALIGNED PAIRS UNTIL END OF ALIGNMENT IS REACHED.

Figure 3.8. Derivation of the dynamic programming algorithm.
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table entry gives the ratio of the observed frequency of substitution between each possible
amino acid pair in related proteins to that expected by chance, given the frequencies of the
amino acids in proteins. These ratios are called odds scores. The ratios are transformed to
logarithms of odds scores, called log odds scores, so that scores of sequential pairs may be
added to reflect the overall odds of a real to chance alignment of an alignment. Examples
are the Dayhoff PAM250 and BLOSUMS62 substitution matrices described below (p. 76).
These matrices contain positive and negative values, reflecting the likelihood of each amino
acid substitution in related proteins. Using these tables, an alignment of a sequential set of
amino acid pairs with no gaps receives an overall score that is the sum of the positive and
negative log odds scores for each individual amino acid pair in the alignment. The higher
this score, the more significant is the alignment, or the more it resembles alignments in
related proteins. The score given for gaps in aligned sequences is negative, because such
misaligned regions should be uncommon in sequences of related proteins. Such a score
will reduce the score obtained from an adjacent, matching region upstream in the
sequences. The score of the alignment in Figure 3.7, using values from the BLOSUM62
amino acid substitution matrix and a gap penalty score of —11 for a gap of length 1, is 26
(the sum of amino acid pair scores) —11 =15. The value of —11 as a penalty for a gap of
length 1 is used because this value is already known from experience to favor the alignment
of similar regions when the BLOSUM62 comparison matrix is used. Choice of the gap
penalty is discussed further below where a table giving suitable choices is presented (see
Table 3.10 on p. 113). As shown in the example, the presence of the gap decreases signifi-
cantly the overall score of the alignment.

Calculating the Odds Score of an Alignment from the Odds Scores of Individual
Amino Acid Pairs

Sequence alignment scores are based on the individual scores of all amino acid pairs
in the alignment. The odds score for an amino acid pair is the ratio of the observed
frequency of occurrence of that pair in alignments of related proteins over the expect-
ed frequency based on the proportion of amino acids in proteins. Alignments are
built by making possible lists of amino acid pairs and by finding the most likely list
using odds scores. To calculate the odds score for an alignment, the odds scores for
the individual pairs are multiplied. This calculation is similar to finding the proba-
bility of one event AND also a second independent event by multiplying the proba-
bilities (if one event OR another is the choice, then the probabilities are added). Thus,
if the odds score of C/C is 7/1 and that of W/W is 50/1, then the probability of C/C
and W/W being in the alignment is 7/1 X 50/1 = 350/1 (note that the order or posi-
tion in the alignment does not matter). Usually, log odds scores are used in these cal-
culations, and these scores are added to produce an overall log odds score for the
alignment. To perform this optimal alignment using odds scores, the method
assumes that the odds score for matching a given pair of sequence positions is not
influenced by the odds score of any other matching pair; i.e., that there are no corre-
lations expected among the amino acids found at various sequence positions. Anoth-
er way of describing this assumption is that the sequences are each being modeled as
a Markov chain, with the amino acid found at each position not being influenced by
other amino acids in the sequence. Although correlations among sequence positions
are expected, since they give rise to structure and function in molecules, this simpli-
fying assumption allows the determination of a reasonable alignment between the
sequences.
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Although one may be able to align the two short sequences in Figure 3.7 by eye and to
place the gap where shown, the dynamic programming algorithm will automatically place
gaps in much longer sequence alignments so as to achieve the best possible alignment. The
derivation of the dynamic programming algorithm is illustrated in Figure 3.8, using the
above alignment as an example. Consider building this alignment in steps, starting with an
initial matching aligned pair of characters from the sequences (V/V) and then sequential-
ly adding a new pair until the alignment is complete, at each stage choosing a pair from all
the possible matches that provides the highest score for the alignment up to that point. If
the full alignment finally reached on the left side of Figure 3.8 (I) has the highest possible
or optimal score, then the old alignment from which it was derived (A) by addition of the
aligned Y/Y pair must also have been optimal up to that point in the alignment. If this were
incorrect, and a different preceding alignment other than A was the highest scoring one,
then the alignment on the left would also not be the highest scoring alignment, and we
started with that as a known condition. Similarly, in Figure 3.8 (II), alignment A must also
have been derived from an optimal alignment (B) by addition of a C/C pair. In this man-
ner, the alignment can be traced back sequentially to the first aligned pair that was also an
optimal alignment. One concludes that the building of an optimal alignment in this step-
wise fashion can provide an optimal alignment of the entire sequences.

The example in Figure 3.8 also illustrates two of the three choices that can be made in
adding to an alignment between two sequences: Match the next two characters in the next
positions in each sequence, or match the next character to a gap in the upper sequence. The
last possibility, not illustrated, is to add a gap to the lower sequence. This situation is anal-
ogous to performing a dot matrix analysis of the sequences, and of either continuing a
diagonal or of shifting the diagonal sideway or downward to produce a gap in one of the
sequences. An example of using the dynamic programming algorithm to align two short
protein sequences is illustrated in Figure 3.9.

Formal Description of the Dynamic Programming Algorithm

The algorithm (Fig. 3.9) may be written in mathematical form, as shown in Figure 3.10.
The diagram indicates the moves that are possible to reach a certain matrix position (i)
starting from the previous row and column at position (i — 1, j — 1) or from any position
in the same row and column.

The following equation describes the algorithm that was illustrated in Figure 3.9. There
are three paths in the scoring matrix for reaching a particular position, a diagonal move
from position i — 1, j — 1 to position 7, j with no gap penalties, or a move from any other
position from column j or row i, with a gap penalty that depends on the size of the gap. For
two sequencesa = a;a,...a,and b =b; b,...b,, where S;; = S(aja; . . . a;, b;b,..b;) then
(Smith and Waterman 1981a,b)

Sij=max { S;_y ;1 + s(aby),

max
x = I(Sifx,j - Wx))
max
)’Z I(Sijfy - Wy)
} (1)

where Sj; is the score at position 7 in sequence a and position j in sequence b, s(a,b;) is the
score for aligning the characters at positions 7 and j, w, is the penalty for a gap of length x
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in sequence a, and w, is the penalty for a gap of length y in sequence b. Note that S;; is a
type of running best score as the algorithm moves through every position in the matrix.
Eventually, when all of the matrix positions (all S;;) have been filled, the best score of the
alignment will be found as the highest scoring position in the last row and column (for a
global alignment), after correcting for any remaining gap penalties to align the sequence
ends, if applicable. To determine an optimal alignment of the sequences from the scoring
matrix, a second matrix called the trace-back matrix is used (Fig. 3.9). The trace-back
matrix keeps track of the positions in the scoring matrix that contributed to the highest
overall score found. The sequence characters corresponding to these high scoring positions
may align or may be next to a gap, depending on the information in the trace-back matrix.
An example of this procedure can be found on the book Web site.

Use of the dynamic programming method requires a scoring system for the comparison of
symbol pairs (nucleotides for DNA sequences and amino acids for protein sequences), and a
scheme for insertion/deletion (GAP) penalties. Once those parameters have been set, the
resulting alignment for two sequences should always be the same. Scoring matrices are

Y

Figure 3.9. Example of using the dynamic programming algorithm to align sequences al a2 a3 a4 and b1 b2 b3 b4.

1.

3.

The sequences are written across the top and down the left side of a matrix, respectively, similar to that done in the dot
matrix analysis, except that an extra row and column labeled “gap” are added to allow the alignment to begin with a gap
of any length in either sequence. The gap rows are filled with penalty scores for gaps of increasing lengths, as indicated. A
zero is placed in the upper right box corresponding to no gaps in either sequence.

Maximum possible values are calculated for all other boxes below and to the right of the top row and left column, taking
into account any sized gap or no gap, using the steps listed in a through d below. The scores for individual matches al-b1,
al-b2, etc., are obtained from a scoring matrix (symbol comparison table). To calculate the value for a particular matrix
position, trial values are calculated from all moves into that position allowed by the algorithm. The allowed moves are from
any position above or to the left of the current position, in the same column or row, or from the upper left diagonal posi-
tion. The diagonal move attempts to align the sequence characters without introducing a gap. Thus, there is no gap penal-
ty in this case. However, moves from above and to the left will introduce gaps, and thus will require one or more gap penal-
ties to be used. (a) sl11 is the score for an al-bl match added to 0 in the upper left position. According to the algorithm,
there are two other possible paths to this position shown by the vertical and horizontal arrows, but they would probably
have to give a lower score because they start at a gap penalty and must include an additional gap penalty. (b) Trial values
for s12 are calculated and the maximum score is chosen. Trial 1 is to add the score for the al-b2 match to s11 and subtract
a penalty for a gap of size 1. The other three trials shown by arrows include gap penalties and so likely cannot yield a high-
er score than trial 1. (c) All possible scores for s21 are calculated by the trial moves indicated. The best score should be
obtained by adding the score of an a2-b1 match to s11 since all other moves include gap penalties. (d) Trial values of s22
are calculated by considering moves from s11, s21, and s12, and from the top row and left end column. s22 will be the best
score of several possible choices, including adding the score for an a2-b2 match to s11, or to s21 less a single gap penalty.
Other trials will normally be attempted from other positions above and to the left of this position, but in this case, they will
probably not provide a higher score for s22 because they include multiple gap penalties.

As the maximum scores for each matrix position are calculated, a record of the paths that produced the highest scores to
reach each matrix position is kept. These short paths, which represent extending the alignment to another matching pair,
with or without gaps, are recorded in another matrix called the trace-back matrix, illustrated below. For example, if mov-
ing from s11 to s21 gave the highest score of all moves to s21, then the corresponding region of the matrix will appear as
shown.

The paths in the trace-back matrix are joined to produce an alignment. In the example shown, the highest-scoring matrix
position in the sequence comparison matrix is located, in this case s44, and the arrows are then traced back as far as pos-
sible, generating the path shown. The corresponding alignment A is shown below the matrix. More than one alignment
may be possible if there is more than one path from the highest scoring matrix position. As an example, s43 could also be
a high-scoring position, generating trace-back alignment B, an alignment that includes a gap opposite a2. Another gap may
also be placed opposite b4, which has no matching symbol. Scoring end gaps is optional in the alignment programs. If

Legend continues.
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gap al a2 a3 a4 gap ail a2 a3 a4

gap 0 1 gap |2 gaps |3 gaps |4 gaps gap 0 1gap |2 ggps 3 gaps |4 gaps
\l

b1 1 gap b1 1gap s11::: s21
b2 |2 gaps b2 |2gaps| s12
b3 |3 gaps b3 |3 gaps
b4 |4 gaps b4 |4 gaps
2a. 2d.
gap al a2 a3 a4 gap al a2 a3 a4
gap 0\ 1 gap(|2 gaps |3 gaps |4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1 gap-’ltsﬂ Y b1 1gap | s11 531
b2 |2 gaps b2 |2 gaps s12:l|; séZ
b3 |3 gaps b3 |3 gaps
b4 |4 gaps b4 |4 gaps
2b. 3. Part of trace back matrix
gap al a2 a3 a4 gap al a2 a3 a4
gap 0 1 gap, |2 gaps |3 gaps |4 gaps gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 1gap 531 b1 1gap | s11 -4 s21 s31 s41
b2 |2 gapsk- s1v2 b2 |2gaps| s12 s22 s32 s42
b3 |3 gaps b3 |[3gaps| s13 s23 s33 s43
b4 |4 gaps b4 |4gaps| s14 s24 s34 s44

4, Trace back matrix

gap al a2 a3 a4

gap 0 1 gap |2 gaps |3 gaps |4 gaps
b1 |1gap | s11 ¥ s21B| s31 | s41

b2 |2gaps| s12 s22 s32 s42

b3 [3gaps| s13 | s23A| s33_| s43 f
b4 |4 gaps| s14 s24 s34 s44

Alignment A: al a2 a3 a4
b1 b2 b3 b4

Alignment B: al a2 a3 a4 -
bt - b2 b3 b4

included in this case, alignment B would be disfavored by an additional gap penalty. In addition to this series of alignments,
or so-called clump of alignments starting from the highest scoring position, there will be other possible alignments start-
ing from other high-scoring matrix positions, and these may also have multiple pathways through the scoring matrix, each

representing a different alignment. Note that these alignments are global alignments because they include the entire
sequences.
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Figure 3.10. Formal description of the dynamic programming algorithm.

described below. The most commonly used ones for protein sequence alignments are the log
odds form of the PAM250 matrix and the BLOSUMSG62 matrix. However, a number of other
choices are available.

Dynamic Programming Can Provide Global or Local Sequence Alignments

Global Alignment: Needleman-Wunsch Algorithm

The dynamic programming method as described above gives a global alignment of
sequences, as described by Needleman and Wunsch (1970), but was also proven mathe-
matically and extended to include an improved scoring system by Smith and Waterman
(1981a,b). The optimal score at each matrix position is calculated by adding the current
match score to previously scored positions and subtracting gap penalties, if applicable.
Each matrix position may have a positive or negative score, or 0. The Needleman-Wunsch
algorithm will maximize the number of matches between the sequences along the entire
length of the sequences. Gaps may also be present at the ends of sequences, in case there is
extra sequence left over after the alignment. These end gaps are often, but not always, given
a gap penalty. The effect of these penalties is illustrated below. An example of a global
alignment of two short sequences calculated by hand using the algorithm is shown on the
book Web site. The example also reveals that more than one alignment may be equally as
likely.

Local Alignment: Smith-Waterman Algorithm

A modification of the dynamic programming algorithm for sequence alignment provides
a local sequence alignment giving the highest-scoring local match between two sequences
(Smith and Waterman 1981a,b). Local alignments are usually more meaningful than glob-
al matches because they include patterns that are conserved in the sequences. They can also
be used instead of the Needleman-Wunsch algorithm to match two sequences that may
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have a matched region that is only a fraction of their lengths, that have different lengths,
that overlap, or where one sequence is a fragment or subsequence of the other. The rules
for calculating scoring matrix values are slightly different, the most important differences
being (1) the scoring system must include negative scores for mismatches, and (2) when a
dynamic programming scoring matrix value becomes negative, that value is set to zero,
which has the effect of terminating any alignment up to that point. The alignments are pro-
duced by starting at the highest-scoring positions in the scoring matrix and following a
trace path from those positions up to a box that scores zero. The mathematical formula-
tion of the dynamic programming algorithm is revised to include a choice of zero as the
minimum value at any matrix position. For two sequencesa = a;a,...a,andb=Db;b,...
b,, where H;; = H(a,a; . . . a;, b;b,..b;), then (Smith and Waterman 1981a)

Hjj = max { Hj— j— 1+ s(ajbj),

max (H,' —xj Wx)>
x=1
max (Hj -, — w,),
y=1
0
} (2)

where Hj; is the score at position 7 in sequence a and position j in sequence b, s(a;b;) is the
score for aligning the characters at positions 7 and j, w, is the penalty for a gap of length x
in sequence a, and w,, is the penalty for a gap of length y in sequence b.

To illustrate the difference between the Needleman-Wunsch and Smith-Waterman
methods, a local alignment of the same two sequences is shown on the book Web site.

Does a Local Alignment Program Always Produce a Local Alignment and a Global
Alignment Program Always Produce a Global Alignment?

Although a computer program that is based on the above Smith-Waterman local align-
ment algorithm is used for producing an optimal alignment, this feature alone does not
assure that a local alignment will be produced. The scoring matrix or match and mismatch
scores and the gap penalties chosen also influence whether or not a local alignment is
obtained. Similarly, a program based on the Needleman-Wunsch algorithm can also
return a local alignment depending on the weighting of end gaps and on other scoring
parameters. Often, one can simply inspect the alignment obtained to see how many gaps
are present. If the matched regions are long and cover most of the sequences and obvious-
ly depend on the presence of many gaps, the alignment is global. A local alignment, on the
other hand, will tend to be shorter and not include many gaps, just as in the example given
on the book Web site. However, these tests are quite subjective, and a more precise method
of knowing whether a given program and set of scoring parameters will provide a local or
global alignment is required. Looking ahead in the chapter for a moment, the best way of
knowing is by looking at what happens when many random or completely unrelated
sequences are aligned under the chosen conditions. As the length of the random sequences
being aligned increases, the score of a global alignment will just increase proportionally.



74 CHAPTER 3

This is easy to see. Because a global alignment matches most of the sequence, and the neg-
ative mismatch score and gap penalties are deliberately chosen to be small in comparison
to match scores in order to provide a long alignment, only matches count and the score has
to be proportional to the length.

If using a scoring matrix, a matrix that gives on the average a positive score to each
aligned position, combined with a small enough gap penalty to allow extension of the
alignment through poorly matched regions, will give a global alignment. Conversely, for
the local alignment, a negative mismatch score and gap penalties are chosen to balance the
positive score of a match and to prevent the alignment growing into regions that do not
match very well. The scoring matrix in this case will on the average give a negative value to
the matched positions, and the gap penalty will be large enough to prevent gaps from
extending the alignment. The local alignment score of random sequences does not increase
proportionally to sequence length, because the positive score of matches is offset by the
mismatch and penalty scores. In this case, it may be shown by theory and experiment that
the score of local random alignments increases much more slowly, and proportionally to
the logarithm of the product of the sequence lengths. It is this different behavior of the
alignment score of random sequences with length that distinguishes global and local align-
ments.

One may well ask, Does it really matter whether I use a sequence alignment program
based on the global alignment algorithm or one based on the local alignment algorithm?
The answer is that sometimes both methods will provide the same alignment with the same
scoring system and sometimes they will not. The most reasonable approach is to use a pro-
gram based on the appropriate algorithm for the analysis at hand, and then to choose the
scoring system carefully. Small changes in the scoring system can abruptly change an align-
ment from a local to a global one. There are even examples in the bioinformatics literature
where this feature of alignment scoring systems has been overlooked. The rest of this chap-
ter is designed to provide a suitable guide for making the right choices.

Additional Development and Use of the Dynamic Programming Algorithm for Sequence

Alignments

Use of Distance Scores for Sequence Alignment

As originally designed by Needleman and Wunsch and Smith and Waterman, the dynam-
ic programming algorithm was used for sequence alignments scored on the basis of the
similarity or identity of sequence characters. An alternative method is to score alignments
based on differences between sequences and sequence characters; i.e., how many changes
are required to change one sequence into another. Using this measure, the greater the dis-
tance between sequences, the greater the evolutionary time that has elapsed since the
sequences diverged from a common ancestor. Hence, distance scores provide a more bio-
logically natural way to compare sequences than do similarity scores. Using a distance
scoring scheme, Sellers (1974, 1980) showed that the dynamic programming method
could be used to provide an alignment that highlighted the evolutionary changes. Smith
et al. (1981) and Smith and Waterman (1981b) showed that alignments based on a simi-
larity scoring scheme could give a similar alignment. This analysis is discussed further on
the book Web site. Conversion between distance and similarity scores is discussed in
Chapter 6.
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Improvement in Speed and Memory Requirement for the Dynamic
Programming Algorithm

The dynamic programming methods for sequence alignments originally required between
n X mand n X m” steps and storage in several matrices of size n X m, where n is the length
of the shorter sequence (Needleman and Wunsch 1970; Waterman et al. 1976; Smith and
Waterman 1981a). On the book Web site, a series of improvements in this algorithm that
reduced the number of steps and amount of memory required are described. These steps
include: (1) a decreased number of steps in the alignment algorithm by Gotoh (1982); (2)
a reduction in the amount of memory required to a linear function of sequence length
(Myers and Miller 1988); (3) ability to find near-optimal alignments (Chao et al. 1994) and
The “éig”g“eﬁf YPrb(; to align long sequences (Schwartz et al. 1991); and (4) ability to find the best-scoring alter-
glr?nzsnd%i t;:ase 7%; native alignments that do not include alignments of the same sequence positions (Water-
tures. man and Eggert 1987; Huang et al. 1990; Huang and Miller 1991).

An alternative global alignment is found by giving the matrix position that begins with
an alignment score of zero, and then all matrix positions that are affected by this change
are recalculated. The next highest matrix score and the path leading to it provide an alter-
native alignment of the sequences that does not include the same sequence matches as were
present in the original alignment (Waterman and Eggert 1987). Alternative local align-
ments are found by a more complex algorithm (the SIM algorithm) that includes the
improvements listed above (Huang et al. 1990; Huang and Miller 1991).

Examples of Global and Local Alignments

An example of global and local alignments between two phage repressor proteins using the
Genetics Computer Group (GCG) programs GAP (Needleman-Wunsch algorithm) and
BESTFIT (Smith-Waterman algorithm) is shown in Figure 3.11. Note that the proteins are
58% similar in the carboxy-terminal domain, which is the region required for
protein—protein interactions and a self-cleavage function that leads to phage induction. In
these GCG implementations of the Needleman-Wunsch and Smith-Waterman algorithms,
the alignments found in the carboxy-terminal domain are identical. However, the Smith-
Waterman method (B) only reports the most alike regions, as expected by the focus on a
local alignment strategy. In contrast, the Needleman-Wunsch method shows the entire
alignment of the sequences but reports a lower score of similarity due to the longer align-
ment.

LALIGN (Fig. 3.12) is an implementation of the SIM algorithm for finding multiple
unique (nonintersecting) alignments in DNA and protein sequences (Huang and Miller
1991) distributed in the FASTA package from W. Pearson. The program is also available
on Web sites (see Table 3.1). Two features of these alignments are noteworthy: First, the
highest-scoring alignment is similar to that found by the GAP program using a different
amino acid substitution matrix and different gap penalties, with some minor variations in
the more dissimilar regions and extension of the alignment farther into the amino-termi-
nal domains. Second, by design, the alternative alignments never align the same amino
acids and, in this example, the second and third alignments score much lower than the first
one. These observations that strongly aligning regions are not significantly influenced by
the scoring system, and that alternative high-scoring alignments are not possible, add con-
vincing support that the initial alignment represents true similarity between these
sequences. Another example of an alignment of these same sequences using ALIGN with a
different scoring system is given on page 116.
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A. GAP (Needleman-Wunsch algorithm)
Percent Similarity: 44.651 Percent Identity: 36.279
1 MSTKKKP LTQEQLEDARRL KAI YEKKKNELGLSQESVADKMGMGQSGVGA 50
1 MNT ........ QLMGER. IRARRKK LKIRQAALGKMVGVSNVAISQ 37
51 LFNGINALNAYNAALLAKI LKVSVEEFSPSIAREIYEMYEAVSMQPSLRS‘IUO
38 WERSETEPNGENLLALSKA LQCSPDYLLKGDLSQTNVAYHS RHEPRG 84
101 EYEYPVFSHVQAGMFSPEL RTFTKGDAERWVSTTKKASDSAFWLEVEGNé 150
.SYPI_ | SWVSAGQWMEA\} EPYHKRA | ENWHDTTVDCISEDéFWLDVCGbS 132

151 MTAPTGSKPSFPDGML LV DPEQAVEPGDFC | ARLGGD EFTFKKL I RDS 199

133 MTAPAG .Ls1 PEGMI LV DPEVEPRNGKLVVAKLEGENEATFKKLVMDA 180
200 GQVF LQTIl_IiITcll\llIi‘l\llli PCNE SCSVVGKV I ASQWF’EET FG 237
181 GRKFLKPLNPQYPMIEINGNCKI IGVVVDAKLAN .LP 216

B. BESTFIT (Smith-Waterman algorithm)
Percent Similarity: 58.871 Percent Identity: 48.387

104 YPVFSHVQAGMFSPELRTFTKGDAERWVSTTKKASDSAFWLEVEGNSMTA 153

86 YPL | SWVSAGQWMEAVEPYHKRA I ENWHDTTVDCSEDS FWLDVQGDSMTA 135

QAVEPGDFC I ARLGGD EFTFKKL | RDSGQV 202

PE
[ [0 0= [ [
PEVEPRNGKLVVAKLEGENEATFKKLVMDAGRK 183

154 TTGSKPSFPD(lil\llIL i Il_
136 PAG. .LSIPEGMI ILVD

PLNPQYPM| PCNESCSVVGKV 1AS 229
II—’II_IIIII’(I)\I(II’I\I/II EINGNCK | | GVVVDA 210

Figure 3.11. Example of local alignment of phage \ I and phage P22 ¢2 repressors by dynamic programming using the GCG
GAP (Needleman-Wunsch algorithm) and BESTFIT (Smith-Waterman algorithm) programs. The log odds form of the
PAM120 amino acid substitution matrix was used. PAM120 is optimal for proteins that are ~40% similar. The alignment
reveals that the proteins are similar in the carboxy-terminal domain. The penalty for opening a gap in one of the sequences is
11 and for extending the gap 8; these were the default values assigned by the programs. Gaps at the unaligned ends of sequences
were also weighted. In the program output, percent identity indicates the number of identical amino acids in the alignment,
and percent similarity, the number of similar amino acids. Similar amino acids are defined by high-scoring matches between
the amino acid pairs in the substitution matrix, and were defined at the time the program was run. The most similar pairs were
indicated by a , less similar pairs by a .’ and unrelated pairs by a space, ’, between the amino acid pairs. Although these
dynamic programming programs provide a single optimal alignment, it is important to realize that a series of alignments are
usually possible. Other programs, such as ALIGN in the FASTA set (Table 3.1 ALIGN-SITES), provide a user-specified num-
ber of alignments (see Fig. 3.12). Additionally, the alignments depend on the method used by the program to convert the trace-
back matrix into an alignment. GCG programs GAP and BESTFIT provide a method for printing two extremes of alignment,
depending on whether gaps are favored in one sequence or the other. These options are called high road and low road.

USE OF SCORING MATRICES AND GAP PENALTIES IN SEQUENCE ALIGNMENTS

Amino Acid Substitution Matrices

Protein chemists discovered early on that certain amino acid substitutions commonly
occur in related proteins from different species. Because the protein still functions with
these substitutions, the substituted amino acids are compatible with protein structure and
function. Often, these substitutions are to a chemically similar amino acid, but other
changes also occur. Yet other substitutions are relatively rare. Knowing the types of
changes that are most and least common in a large number of proteins can assist with pre-
dicting alignments for any set of protein sequences, as illustrated in Figure 3.13. If related
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Figure 3.12. Example of LALIGN program for finding multiple local alignments of two protein sequences. Three indepen-
dent alignments of the phage N and P22 repressors are shown. The amino acid substitution matrix used was the log odds form
of the Dayhoff PAM250 matrix provided with the program, with a gap opening penalty of —12 and a gap extension penalty
of —2.

LALIGN finds the best local alignments between two sequences
version 2.0u64 March 1998

Please cite:
X. Huang and W. Miller (1991) Adv. Appl. Math. 12:373-381

Comparison of:

(A) lamcl.pro LAMCl REFORMAT of: cipro.pro from: 1 - 237
(B) p22c2.pro ©P22C2 REFORMAT of: p22c2.pro from: 1 - 216
using matrix file: pam250.mat, gap penalties: -12/-2

34.0% identity in 206 aa overlap; score: 338

30 40 50 60 70 80
LAMC1 KKNELGLSQESVADKMGMGQSGVGALFNGINALNAYNAALLAKILKVSVEEFSPSIAREI

P22C2 RRKKLKIRQAALGKMVGVSNVAISQWERSETEPNGENLLALSKALQCSPDYLLKGDLSQ
20 30 40 50 60 70

90 100 110 120 130 140
LAMC1 YEMYEAVSMQPSLRSEYEYPVFSHVQAGMFSPELRTFTKGDAERWVSTTKKASDSAFWLE

P22C2 NVAYHSRHEPRG ————— SYPLISWVSAGQWMEAVEPYHKRAIENWHDTTVDCSEDSFWLD
80 90 100 110 120

150 160 170 180 190 200
LAMC1 VEGNSMTAPTGSKPSFPDGMLILVDPEQAVEPGDFCIARLGGD-EFTFKKLIRDSGQVFL
P22C2 VQGDSMTAPAG—-LSIPEGMIILVDPEVEPRNGFLVVAKLEGENEATFKKLVMDAGRKFL
130 140 150 160 170 180

210 220 230
LAMCl1 QPLNPQYPMIPCNESCSVVGKVIASQO
P22C2 RPLNPQYPMIEINGNCKIIGVVVDAK

i%0 200 210

17.8% identity in 90 aa overlap; score: 37

20 30 40 50 60 70
LAMCl RRLEKAIYEKKKNELGLSQESVAD~KMGMGQSGVGALFNGINALNAYNAALLAKILRKVSVE

32 Tele cene sne snse s Sa. a2, . 23 3.

P22C2 KKLKIRQAALGKMVGVSNVAISQWERSETEPNGENLLALSKALQCSPDYLLKGDLSQTNV
20 30 40 50 60 70

80 90 100
LAMC]1 EF-SPSIAREIYEMYEAVSMQPSLRSEYEY
P22C2 AYHSRHEPRGSYPLISWVSAGOWMEAVEPY
80 90 100

40.0% identity in 15 aa overlap; score: 36

220 230
LAMC1 SCSVVGKVIASQWPE

P22C2 SYPLISWVSAGQWME
90

protein sequences are quite similar, they are easy to align, and one can readily determine
the single-step amino acid changes. If ancestor relationships among a group of proteins are
assessed, the most likely amino acid changes that occurred during evolution can be pre-
dicted. This type of analysis was pioneered by Margaret Dayhoft (1978).

Amino acid substitution matrices or symbol comparison tables, as they are sometimes

called, are used for such purposes. Although the most common use of such tables is for
comparison of protein sequences, other tables of nucleic acid symbols are also used for
comparison of nucleic acid sequences in order to accommodate ambiguous nucleotide
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Alignment
sequence A Tyr Cys Asp Al
sequence B Phe Met Glu Gly
BLOSUM®62 matrix value 3 -1 2 0

Total score for alignment of sequence A with sequence B
=3-1+2+0=4

Figure 3.13. Use of amino acid substitution matrix to evaluate an alignment of two protein
sequences. The score for each amino acid pair (Tyr/Phe, etc.) is looked up in the BLOSUM62 matrix.
Each value represents an odds score, the likelihood that the two amino acids will be aligned in align-
ments of similar proteins divided by the likelihood that they will be aligned by chance in an align-
ment of unrelated proteins. In a series of individual matches in an alignment, these odds scores are
multiplied to give an overall odds score for the alignment itself. For convenience, odds scores are
converted to log odds scores so that the values for amino acid pairs in an alignment may be summed
to obtain the log odds score of the alignment. In this case, the logarithms are calculated to the base
2 and multiplied by 2 to give values designated as half-bits (a bit is the unit of an odds score that has
been converted to a logarithm to the base 2). The value of 4 indicates that the 4 amino acid align-
ment is 242 = 4-fold more likely than expected by chance.

characters or models of expected sequence changes during different periods of evolution-
ary time that vary scoring of transitions and transversions.

In the amino acid substitution matrices, amino acids are listed both across the top of a
matrix and down the side, and each matrix position is filled with a score that reflects how
often one amino acid would have been paired with the other in an alignment of related
protein sequences. The probability of changing amino acid A into B is always assumed to
be identical to the reverse probability of changing B into A. This assumption is made
because, for any two sequences, the ancestor amino acid in the phylogenetic tree is usual-
ly not known. Additionally, the likelihood of replacement should depend on the product
of the frequency of occurrence of the two amino acids and on their chemical and physical
similarities. A prediction of this model is that amino acid frequencies will not change over
evolutionary time (Dayhoftf 1978).

Dayhoff Amino Acid Substitution Matrices (Percent Accepted Mutation or
PAM Matrices)

This family of matrices lists the likelihood of change from one amino acid to another in
homologous protein sequences during evolution. There is presently no other type of scor-
ing matrix that is based on such sound evolutionary principles as are these matrices. Even
though they were originally based on a relatively small data set, the PAM matrices remain
a useful tool for sequence alignment. Each matrix gives the changes expected for a given
period of evolutionary time, evidenced by decreased sequence similarity as genes encoding
the same protein diverge with increased evolutionary time. Thus, one matrix gives the
changes expected in homologous proteins that have diverged only a small amount from
each other in a relatively short period of time, so that they are still 50% or more similar.
Another gives the changes expected of proteins that have diverged over a much longer peri-
od, leaving only 20% similarity. These predicted changes are used to produce optimal
alignments between two protein sequences and to score the alignment. The assumption in
this evolutionary model is that the amino acid substitutions observed over short periods of
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evolutionary history can be extrapolated to longer distances. The BLOSUM matrices (see
below) are based on scoring substitutions found over a range of evolutionary periods and
reveal that substitutions are not always as predicted by the PAM model.

In deriving the PAM matrices, each change in the current amino acid at a particular site
is assumed to be independent of previous mutational events at that site (Dayhoff 1978).
Thus, the probability of change of any amino acid a to amino acid b is the same, regard-
less of the previous changes at that site and also regardless of the position of amino acid a
in a protein sequence. Amino acid substitutions in a protein sequence are thus viewed as a
Markov model (see also hidden Markov models in Chapter 4), characterized by a series of
changes of state in a system such that a change from one state to another does not depend
on the previous history of the state. Use of this model makes possible the extrapolation of
amino acid substitutions observed over a relatively short period of evolutionary time to
longer periods of evolutionary time.

To prepare the Dayhoff PAM matrices, amino acid substitutions that occur in a group
of evolving proteins were estimated using 1572 changes in 71 groups of protein sequences
that were at least 85% similar. Because these changes are observed in closely related pro-
teins, they represent amino acid substitutions that do not significantly change the function
of the protein. Hence they are called “accepted mutations,” defined as amino acid changes
“accepted” by natural selection. Similar sequences were first organized into a phylogenet-
ic tree, as illustrated in Figure 1.1 in Chapter 1. The number of changes of each amino acid
into every other amino acid was then counted. To make these numbers useful for sequence
analysis, information on the relative amount of change for each amino acid was needed.

Relative mutabilities were evaluated by counting, in each group of related sequences, the
number of changes of each amino acid and by dividing this number by a factor, called the
exposure to mutation of the amino acid. This factor is the product of the frequency of
occurrence of the amino acid in that group of sequences being analyzed and the total num-
ber of all amino acid changes that occurred in that group per 100 sites. This factor nor-
malizes the data for variations in amino acid composition, mutation rate, and sequence
length. The normalized frequencies were then summed for all sequence groups. By these
scores, Asn, Ser, Asp, and Glu were the most mutable amino acids, and Cys and Trp were
the least mutable.

The above amino acid exchange counts and mutability values were then used to gener-
ate a 20 X 20 mutation probability matrix representing all possible amino acid changes.
Because amino acid change was modeled by a Markov model, the mutation at each site
being independent of the previous mutations, the changes predicted for more distantly
related proteins that have undergone N mutations could be calculated. By this model, the
PAM1 matrix could be multiplied by itself N times, to give transition matrices for com-
paring sequences with lower and lower levels of similarity due to separation of longer peri-
ods of evolutionary history. Thus, the commonly used PAM250 matrix represents a level
of 250% of change expected in 2500 my. Although this amount of change seems very large,
sequences at this level of divergence still have about 20% similarity. For example, alanine
will be matched with alanine 13% of the time and with another amino acid 87% of the
time.

The percentage of remaining similarity for any PAM matrix can be calculated by sum-
ming the percentages for amino acids not changing (Ala versus Ala, etc.) after multiplying
each by the frequency of that amino acid pair in the database (e.g., 0.089 for Ala) (Dayhoff
1978). The PAM120, PAMS80, and PAM60 matrices should be used for aligning sequences
that are 40%, 50%, and 60% similar, respectively. Simulations by George et al. (1990) have
shown that, as predicted, the PAM250 matrix provides a better-scoring alignment than
lower-numbered PAM matrices for distantly related proteins of 14-27% similarity.
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PAM matrices are usually converted into another form, called log odds matrices. The
odds score represents the ratio of the chance of amino acid substitution by two different
hypotheses—one that the change actually represents an authentic evolutionary variation at
that site (the numerator), and the other that the change occurred because of random
sequence variation of no biological significance (the denominator). Odds ratios are con-
verted to logarithms to give log odds scores for convenience in multiplying odds scores of
amino acid pairs in an alignment by adding the logarithms (Fig. 3.13).

Example: Calculations for obtaining the log odds score for changes between Phe and
Tyr at an evolutionary distance of 250 PAMs

1. Of 1572 observed amino acid changes, there were 260 changes between Phe and
Tyr. These numbers were multiplied by (1) the relative mutability of Phe (see
text), and (2) the fraction of Phe to Tyr changes over all changes of Phe to any
other amino acid (since Phe to Tyr and Tyr to Phe changes are not distinguished
in the original mutation counts, sums of changes are used to calculate the frac-
tion) to obtain a mutation probability score of Phe to Tyr. A similar score was
obtained for changes of Phe to each of the other 18 amino acids, and also for the
calculated probability of not changing at all. The resulting 20 scores were
summed and divided by a normalizing factor such that their sum represented a
probability of change of 1%, as illustrated in Table 3.2.

In this matrix, the score for changing Phe to Tyr was 0.0021, as opposed to a
score of Phe not changing at all of 0.9946, as shown in Table 3.2. These calcula-
tions were repeated for Tyr changing to any other amino acid. The score for
changing Tyr to Phe was 0.0028, and that of not changing Tyr was 0.9946 (not
shown). These scores were placed in the PAM1 matrix, in which the overall
probability of each amino acid changing to another is ~1%, and that of each not
changing is ~99%.

2. The above PAM1 matrix was multiplied by itself 250 times to obtain the distri-
bution of changes expected for 250 PAM:s of evolutionary change. These changes
can include both forward changes to another amino acid and reverse changes to
a former one. At this distance, the probability of change of Phe to Tyr was 0.15
as opposed to a probability of 0.32 of no change in Phe. The corresponding
probabilities for Tyr to Phe at 250 PAMs were 0.20 and 0.31 for no change.

3. The log odds values for changes between Phe and Tyr were then calculated. The
Phe-Tyr score in the 250 PAM matrix, 0.15, was divided by the frequency of Phe
in the sequence data, 0.040, to give the relative frequency of change. This ratio,
0.15/0.04 = 3.75, was converted to a logarithm to the base 10 (log;(3.75 = 0.57)
and multiplied by 10 to remove fractional values (0.57 X 10 = 5.7). Similarly,
the Tyr to Phe score is 0.20/0.03 = 6.7, and the logarithm of this number is
log106.7 = 0.83, and multiplied by 10 (0.83 X 10 = 8.3). The average of 5.7 and
8.3 is 7, the number entered in the log odds table for changes between Phe and
Tyr at 250 PAMs of evolutionary distance.

The log odds from the PAM250 matrix, which is sometimes referred to as the
mutation data matrix (MDM) at 250 PAMs and also as MDMyg is shown in Fig-
ure 3.14. The log odds scores in this table lie within the range of —8 to +17. A
value of 0 indicates that the frequency of the substitution between a matched
pair of amino acids in related proteins is as expected by chance; a value less than
0 or greater than 0 indicates that the frequency is less than or greater than that
expected by chance, respectively. Using such a matrix, a high positive score
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between two amino acids means that the pair is more likely to be found aligned
in sequences that are derived from a common ancestor, i.e., homologous, than
in unrelated or nonhomologous sequences. The highest-scoring replacements
are for amino acids whose side chains are chemically similar, as might be expect-
ed if the amino acid substitution is not to impede function. In the original data,
the largest number of observed changes (83) was between Asp (D) and Glu (E).
This number is reflected as a log odds score of +3 in the MDM. Many changes
were not observed. For example, there were no changes between Gly (G) and
Trp (W), resulting in a score of —7 in the table.

Table 3.2.

Normalized probability scores for

changing Phe to any other amino acid (or of not
changing) at PAM1 and PAM250 evolutionary dis-
tances

Amino acid

change PAM1 PAM250
Phe to Ala 0.0002 0.04
Phe to Arg 0.0001 0.01
Phe to Asn 0.0001 0.02
Phe to Asp 0.0000 0.01
Phe to Cys 0.0000 0.01
Phe to GIn 0.0000 0.01
Phe to Glu 0.0000 0.01
Phe to Gly 0.0001 0.03
Phe to His 0.0002 0.02
Phe to Ile 0.0007 0.05
Phe to Leu 0.0013 0.13
Phe to Lys 0.0000 0.02
Phe to Met 0.0001 0.02
Phe to Phe 0.9946 0.32
Phe to Pro 0.0001 0.02
Phe to Ser 0.0003 0.03
Phe to Thr 0.0001 0.03
Phe to Trp 0.0001 0.01
Phe to Tyr 0.0021 0.15
Phe to Val 0.0001 0.05
SUM?* 1.0000 1.00

?Approximate since scores are rounded off.
The multiplication of two PAM1 matrices to give a

PAM2 matrix. Only three rows and columns are shown
for illustrative purposes.

aal
aa2
aa3

aal
aa2
aa3

aal aa2 aa3 - aal aa2 aa3 -

a b ¢ aal| a b ¢

d e f % aa2| d e f

g h i aa3| g h i

l

aal aa2 aa3 - A=a’>+bd+cg+...
A B C B=ab+be+ch+...
g fl 1; C=ac+bf +ci +...

D=da+ed +fg +..

., etc.
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Figure 3.14. The log odds form (the mutation data matrix or MDM) of the PAM250 scoring matrix. Amino acids are
grouped according to the chemistry of the side group: (C) sulthydryl, (STPAG) small hydrophilic, (NDEQ) acid, acid amide
and hydrophilic, (HRK) basic, (MILV) small hydrophobic, and (FYW) aromatic. Each matrix value is calculated from an odds
score, the probability that the amino acid pair will be found in alignments of homologous proteins divided by the probabili-
ty that the pair will be found in alignments of unrelated proteins by random chance. The logarithm of these ODDS scores to
the base 10 is multiplied by 10 and then used as the table value (see text for details). Thus, +10 means the ancestor probabil-
ity is greater, O that the probabilities are equal, and —4 that the alignment is more often a chance one than due to an ances-
tor relationship. Because these numbers are logarithms, they may be added to give a combined probability of two or more
amino acid pairs in an alignment. Thus, the probability of aligning two Ys in an alignment YY/YY is 10 + 10 = 20, a very sig-
nificant score, whereas that of YY with TP is —2 —5 = — 7, a rare and unexpected alignment between homologous sequences.

At one time, the PAM250 scoring matrix was modified in an attempt to improve the
alignment obtained. All scores for matching a particular amino acid were normalized to
the same mean and standard deviation, and all amino acid identities were given the same
score to provide an equal contribution for each amino acid in a sequence alignment (Grib-
skov and Burgess 1986). These modifications were included as the default matrices for the
GCG sequence alignment programs in versions 8 and earlier and are optional in later ver-
sions. They are not recommended because they will not give an optimal alignment that is
in accord with the evolutionary model.

Choosing the Best PAM Scoring Matrices for Detecting Sequence Similarity. The
ability of PAM scoring matrices to distinguish statistically between chance and biological-
ly meaningful alignments has been analyzed using a recently developed statistical theory
for sequences (Altschul 1991) that is discussed later in this chapter. As discussed above,
each PAM matrix is designed to score alignments between sequences that have diverged by
a particular degree of evolutionary distance. Altschul (1991) has examined how well the
PAM matrices actually can distinguish proteins that have diverged to a greater or lesser
extent, when these proteins are subjected to a local alignment.
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Initially, when using a scoring matrix to produce an alignment, the amount of similar-
ity between sequences may not be known. However, the ungapped alignment scores
obtained are maximal when the correct PAM matrix, i.e., the one corresponding to the
degree of similarity in the target sequences, is used (Altschul 1991). Altschul (1991) has
also examined the ability of PAM matrices to provide a reliable enough indication of an
ungapped local alignment score between sequences on an initial attempt of alignment. For
sequence alignments, the PAM200 matrix is able to detect a significant ungapped align-
ment of 16-62 amino acids whose score is within 87% of the optimal one. Alternatively,
several combinations, such as PAMS80 and PAM250 or PAM120 and PAM350, can also be
used. Altschul (1993) has also proposed using a single matrix and adjusting a statistical
parameter in the scoring system to reach more distantly related sequences, but this change
would primarily be for database searches.

Scoring matrices are also used in database searches for similar sequences. The optimal
matrices for these searches have also been determined (see book Web site and Chapter 7).
It is important to remember that these predictions assume that the amino acid distribu-
tions in the set of protein families used to make the scoring matrix are representative of all
families that are likely to be encountered. The original PAM matrices represent only a
small number of families. Scoring matrices obtained more recently, such as the BLOSUM
matrices, are based on a much larger number of protein families. BLOSUM matrices are
not based on a PAM evolutionary model in which changes at large evolutionary distance
are predicted by extrapolation of changes found at small distances. Matrix values are based
on the observed frequency of change in a large set of diverse proteins. As is discussed on
the book Web site, the BLOSUM scoring matrices (especially BLOSUM62) appear to cap-
ture more of the distant types of variations found in protein families.

In addition to the aforementioned differences among PAM scoring matrices for scoring
alignments of more- or less-related proteins, the ability of each PAM matrix to discrimi-
nate real local alignments from chance alignments also varies. To calculate the ability of the
entire matrix to discriminate related from unrelated sequences (H, the relative entropy),
the score for each amino acid pair s;; (in units of log,, called bits) is multiplied by the prob-
ability of occurrence of that pair in the original dataset, g;; (Altschul 1991). This weighted
score is then summed over all of the amino acid pairs to produce a score that represents
the ability of the average amino acid pair in the matrix to discriminate actual from chance
alignments.

20 i
H=2 > a;Xs; (3)

i=1j=1

In information theory, this score is called the average mutual information content per
pair, and the sum over all pairs is the relative entropy of the matrix (termed H). The rela-
tive entropy will be a small positive number. For the PAM250 matrix the number is +0.36,
for PAM120, +0.98, and for PAM160, +0.70. In general, all other factors being equal, the
higher the value of H for a scoring matrix, the more likely it is to be able to distinguish real
from chance alignments.

Analysis of the Dayhoff Model of Protein Evolution as Used in PAM Matrices. As
outlined above, the Dayhoff model of protein evolution is a Markov process. In this model,
each amino acid site in a protein can change at any time to any of the other 20 amino acids
with probabilities given by the PAM table, and the changes that occur at each site are inde-
pendent of the amino acids found at other sites in the protein and depend only on the cur-
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rent amino acid at the site. The assumptions that underlie the method of constructing the
Dayhoff scoring matrix have been challenged (for discussion, see George et al. 1990; States
and Boguski 1991). First, it is assumed that each amino acid position is equally mutable,
whereas, in fact, sites vary considerably in their degree of mutability. Mutagenesis hot spots
are well known in molecular genetics, and variations in mutability of different amino acid
sites in proteins are well known.

The more conserved amino acids in similar proteins from different species are ones that
play an essential role in structure and function and the less conserved are in sites that can
vary without having a significant effect on function. Thus, there are many factors that
influence both the location and types of amino acid changes that occur in proteins. Wilbur
(1985) has tested the Markov model of evolution (see box, below) and has shown that it
can be valid if certain changes are made in the way that the PAM matrices are calculated.

Test of Markov Model of Evolution in Proteins

To test the model, Wilbur addressed a major criticism of the PAM scoring matrix,
namely that the frequency of amino acid changes that require two nucleotide changes
is higher than would be expected by chance. About 20% of the observed amino acid
changes require more than a single mutation for the necessary codon changes. This
fraction is far greater than would be expected by chance.

To correct for changes that require at least two mutations, Wilbur recalculated the
PAMI matrix using only amino acid substitution data from 150 amino acid pairs that
are accountable by single mutations. To accomplish this calculation, he used a refined
mathematical model that provided a more precise measure of the rate of substitution.
He then estimated frequencies of the other 230 amino acid substitutions reachable
only by at least two mutations, and compared these frequencies to the values calcu-
lated by Dayhoff, who had assumed these were single-step changes. If these numbers
agreed, argued Wilbur, then the PAM model used to produce the Dayhoff matrix is
a reliable one. In fact, the Dayhoff values exceeded the two-step model values by a
factor of about 117. One source of discrepancy was the assumption that the two-step
changes were a linear function of evolutionary time over short evolutionary periods
of 1 PAM (average time of 1 PAM = 10 my), whereas, because two mutations are
required to make the change, a quadratic function is expected. With this correction
made to the Dayhoff calculations for amino acid substitutions requiring two muta-
tions, agreement with the two-step model improved about 10-fold, leaving another
11.7-fold unaccounted for.

Wilbur analyzed the remainder by the covarion hypothesis (Fitch and Markowitz
1970; Miyamoto and Fitch 1995), in which it is assumed that only a certain fraction
of amino acid sites in a protein are variable and that one site influences another.
Thus, a change in one site may influence the variability of others. This model seems
to be reasonable from many biological perspectives. The prediction of this hypothe-
sis is that the frequency of two-step changes would be overestimated because we did
not take into account the failure of many sites to be mutable. Using a reasonable esti-
mate of 0.3 for the fraction of the sites that could change, the effect on the Dayhoff
calculations for frequencies of two-step changes would be 3.3-fold. The remaining
discrepancy in the 11.7-fold ratio between Dayhoff values and two-step values may
be attributable to variations in mutation rates from site to site, or to the exclusion of
certain amino acids at a particular site. In conclusion, Wilbur (1985) has shown that
the Dayhoff model for protein evolution appears to give predictable and consistent
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results, but that frequencies of change between amino acids that require two muta-
tional steps must be calculated as a two-step process. Failure to do so generates errors
due to variations in site-to-site mutability. George et al. (1990) have counterargued
that it has never been demonstrated that two independent mutations must occur,
each becoming established in a population before the next appears.

A further criticism of the PAM scoring matrices is that they are not more useful
for sequence alignment than simpler matrices, such as one based on a chemical group-
ing of amino acid side chains. Although alignment of related proteins is straightforward
and quite independent of the symbol comparison scoring scheme, alignments of less-
related proteins are much more speculative (Feng et al. 1985). These matrices and the
BLOSUM matrices have been very useful for finding more distantly related sequences
(George et al. 1990). There have been recent changes in the way that members of protein
families are identified (see Chapters 4 and 9). Once a family has been identified, family-
specific scoring matrices can be produced, and there is no point in using these general
matrices. As described in Chapter 4, a scoring matrix representing a section of aligned
sequences with no gaps, or a matrix representing a section of aligned sequences with
matches, mismatches, and gaps (a profile), are the best tools to search for more family
members.

Another criticism of the PAM matrix is that constructing phylogenetic relationships
prior to scoring mutations has limitations, due to the difficulty of determining ancestral
relationships among sequences, a topic discussed in Chapter 6. Early on in the Dayhoff
analysis, the evolutionary trees were estimated by a voting scheme for the branches in the
tree, each node being estimated by the most abundant amino acid in distal parts of the tree.
Once available, the PAM matrices were used to estimate the evolutionary distance between
proteins, given the amount of sequence similarity. Such data can be used to produce a tree
based on evolutionary distances (Chapter 6). This circular analysis of using alignments to
score amino acid changes and then to use the matrices to produce new alignments has also
been criticized. However, no method has yet been devised in any type of sequence analysis
for completely circumventing this problem. Evidence that the values in the scoring matrix
are insensitive to changes in the phylogenetic relationships has been provided (George et
al. 1990).

Finally, the Dayhoff PAM matrices have been criticized because they are based on a
small set of closely related proteins. The Dayhoff data set has been augmented to include
the 1991 protein database (Gonnet et al. 1992; Jones et al. 1992). The ability of the Dayhoff
matrices to identify homologous sequences has also been extensively compared to that of
other scoring matrices. These comparisons are discussed on the book Web site.

Blocks Amino Acid Substitution Matrices (BLOSUM)

The BLOSUMBS62 substitution matrix (Henikoff and Henikoff 1992) is widely used for scor-
ing protein sequence alignments. The matrix values are based on the observed amino acid
substitutions in a large set of ~2000 conserved amino acid patterns, called blocks. These
blocks have been found in a database of protein sequences representing more than 500
families of related proteins (Henikoff and Henikoff 1992) and act as signatures of these
protein families. The BLOSUM matrices are thus based on an entirely different type of
sequence analysis and a much larger data set than the Dayhoff PAM matrices.
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These protein families were originally identified by Bairoch in the Prosite catalog. This
catalog provides lists of proteins that are in the same family because they have a similar
biochemical function. For each family, a pattern of amino acids that are characteristic of
that function is provided. Henikoff and Henikoff (1991) examined each Prosite family for
the presence of ungapped amino acid patterns (blocks) that were present in each family
and that could be used to identify members of that family. To locate these patterns, the
sequences of each protein family were searched for similar amino acid patterns by the
MOTTIF program of H. Smith (Smith et al. 1990), which can find patterns of the type aal
d1 aa2 d2 aa3, where aal and aa2 are conserved amino acids and d1 and d2 are stretches
of intervening sequence up to 24 amino acids long located in all sequences. These initial
patterns were organized into larger ungapped patterns (blocks) between 3 and 60 amino
acids long by the Henikoffs PROTOMAT program (http://www.blocks.thcrc.org).
Because these blocks were present in all of the sequences in each family, they could be
used to identify other members of the same family. Thus, the family collections were
enlarged by searching the sequence databases for more proteins with these same con-
served blocks.

The blocks that characterized each family provided a type of multiple sequence align-
ment for that family. The amino acid changes that were observed in each column of the
alignment could then be counted. The types of substitutions were then scored for all
aligned patterns in the database and used to prepare a scoring matrix, the BLOSUM
matrix, indicating the frequency of each type of substitution. As previously described for
the PAM matrices, BLOSUM matrix values were given as logarithms of odds scores of the
ratio of the observed frequency of amino acid substitutions divided by the frequency
expected by chance. An example of the calculations is shown in Figure 3.15.

This procedure of counting all of the amino acid changes in the blocks, however, can
lead to an overrepresentation of amino acid substitutions that occur in the most closely
related members of each family. To reduce this dominant contribution from the most alike
sequences, these sequences were grouped together into one sequence before scoring the
amino acid substitutions in the aligned blocks. The amino acid changes within these clus-
tered sequences were then averaged. Patterns that were 60% identical were grouped togeth-
er to make one substitution matrix called BLOSUMG60, and those 80% alike to make anoth-
er matrix called BLOSUMS0, and so on. As with the PAM matrices, these matrices differ
in the degree to which the more common amino acid pairs are scored relative to the less
common pairs. Thus, when used for aligning protein sequences, they provide a greater or
lesser distinction between the more common and less common amino acid pairs. The abil-
ity of these different BLOSUM matrices to distinguish real from chance alignments and to
identify as many members as possible of a protein family has been determined (Henikoff
and Henikoff 1992).

Two types of analyses were performed: (1) an information content analysis of each
matrix, as was described above for the PAM matrices, and (2) an actual comparison of the
ability of each matrix to find members of the same families in a database search, discussed
below. As the clustering percentage was increased, the ability of the resulting matrix to dis-
tinguish actual from chance alignments, defined as the relative entropy of the matrix or the
average information content per residue pair (see above), also increased. As clustering
increased from 45% to 62%, the information content per residue increased from ~0.4 to
0.7 bits per residue, and was ~1.0 bits at 80% clustering. However, at the same time, the
number of blocks that contributed information decreased by 25% between no clustering
and 62% clustering. BLOSUMS62 represents a balance between information content and
data size. The BLOSUM62 matrix is shown in Figure 3.16.
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Figure 3.15. Derivation of the matrix values in the BLOSUMG62 scoring matrix. As an example of
the calculations, if a column in one of the blocks consisted of 9 A and 1 S amino acids, the follow-
ing is true for this data set (see Henikoff and Henikoff 1992).

1. Since the original sequence from which the others were derived is not known, each column posi-
tion has to be considered a possible ancestor of the other nine columns. Hence, there are
8+7+6...+1 = 36 possible AA pairs (fsx) and 9 possible AS pairs (f5s) to be compared.

2. There are 20+19+18+ ... +1 = 210 possible amino acid pairs.

3. The frequency of occurrence of an AA pair, qaa = faa/(faa + fas) = 36/(36+9) = 0.8, and that
of an AS pair, qas = fas/(faa + fas) = 9/(36+9) = 0.2.

4. The expected frequency of A being in a pair, pa = (qaa + qas/2) = 0.8 + 0.2/2 = 0.9, and that
Ofps = qAS/2 =0.1.

5. The expected frequency of occurrence of AA pairs, ey = pa X pa = 0.9 X 0.9 = 0.81, and that
of AS, eas =2 X ps X pa = 2 X 0.9 X 0.1 = 0.18.

6. The matrix entry for AA will be calculated from the ratio of the occurrence frequency to the
expected frequency. For AA, ratio = qaa/ eaa = 0.8/0.81 = 0.99, and for AS, ratio = qas/ eas =
0.2/0.18 = 1.11.

7. Both ratios are converted to logarithms to the base 2 and then multiplied by 2 (1/2 bit units).
Matrix entry for AA, sxa = logy(qaa/ €an) = —0.04, and for AS, sas = logy(qas/ eas) = 0.30.
These logarithms are both rounded to 1 !/, bit unit.

Henikoff and Henikoff (1993) have prepared a set of interval BLOSUM matrices that
represent the changes observed between more closely related or more distantly related rep-
resentatives of each block. Rather than representing the changes observed in very alike
sequences up to sequences that were n% alike to give a BLOSUM-n matrix, the new
BLOSUM-nm matrix represented the changes observed in sequences that were between
n% alike and m% alike. The idea behind these matrices was to have a set of matrices cor-
responding to amino acid changes in sequence blocks that are separated by different evo-
lutionary distances.

Comparison of the PAM and BLOSUM Amino Acid Substitution Matrices

There are several important differences in the ways that the PAM and BLOSUM scoring
matrices were derived, and these differences should be appreciated in order to interpret the
results of protein sequence alignments obtained with these matrices. First, the PAM matri-
ces are based on a mutational model of evolution that assumes amino acid changes occur
as a Markov process, each amino acid change at a site being independent of previous
changes at that site. Changes are scored in sequences that are 85% similar after predicting
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Figure 3.16. The BLOSUM62 amino acid substitution matrix. The amino acids in the table are grouped according to the
chemistry of the side group: (C) sulfthydryl, (STPAG) small hydrophilic, (NDEQ) acid, acid amide, and hydrophilic, (HRK)
basic, (MILV) small hydrophobic, and (FYW) aromatic. Each entry is the logarithm of the odds score, found by dividing the
frequency of occurrence of the amino acid pair in the BLOCKS database (after sequences 62% or more in similarity have been
clustered) by the likelihood of an alignment of the amino acids by random chance. The denominator in this ratio is calculat-
ed from the frequency of occurrence of each of the two individual amino acids in the BLOCKS database and provides a mea-
sure of a chance alignment of the two amino acids. The actual/expected ratio is expressed as a log odds score in so-called half-
bit units, obtained by converting the odds ratio to a logarithm to the base 2, and then multiplying by 2. A zero score means
that the frequency of the amino acid pair in the database is as expected by chance, a positive score that the pair is found more
often than by chance, and a negative score that the pair is found less often than by chance. The accumulated score of an align-
ment of several amino acids in two sequences may be obtained by adding up the respective scores of each individual pair of
amino acids. As with the PAM250-derived matrix, the highest-scoring matches are between amino acids that are in the same
chemical group, and the very highest-scoring matches are for cysteine—cysteine matches and for matches among the aromat-
ic amino acids. Compared to the PAM160 matrix, however, the BLOSUMG62 matrix gives a more positive score to mismatch-
es with the rare amino acids, e.g., cysteine, a more positive score to mismatches with hydrophobic amino acids, but a more
negative score to mismatches with hydrophilic amino acids (Henikoff and Henikoff 1992).

a phylogenetic history of the changes in each family. Thus, the PAM matrices are based on
prediction of the first changes that occur as proteins diverge from a common ancestor dur-
ing evolution of a protein family. Matrices that may be used to compare more distantly
related proteins are then derived by extrapolation from these short-term changes, assum-
ing that these more distant changes are a reflection of the short-term changes occurring
over and over again. For each longer evolutionary interval, each amino acid can change to
any other with the same frequency as observed in the short term. In contrast, the BLOSUM
matrices are not based on an explicit evolutionary model. They are derived from consider-
ing all amino acid changes observed in an aligned region from a related family of proteins,
regardless of the overall degree of similarity between the protein sequences. However, these
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proteins are known to be related biochemically and, hence, should share common ances-
try. The evolutionary model implied in such a scheme is that the proteins in each family
share a common origin, but closer versus distal relationships are ignored, as if they all were
derived equally from the same ancestor, called a starburst model of protein evolution (see
Chapter 6). Second, the PAM matrices are based on scoring all amino acid positions in
related sequences, whereas the BLOSUM matrices are based on substitutions and con-
served positions in blocks, which represent the most alike common regions in related
sequences. Thus, the PAM model is designed to track the evolutionary origins of proteins,
whereas the BLOSUM model is designed to find their conserved domains.

Other Amino Acid Scoring Matrices

In addition to the Dayhoff PAM, and related Gonnet et al. (1992), Benner et al. (1994), and
Jones et al. (1992) matrices and the BLOSUM matrices, a number of other amino acid sub-
stitution matrices have been used for producing protein sequence alignments, and several
representative ones are listed in Table 3.3. For a more complete list and comparison, see
Vogt et al. (1995). These tables vary from a comparison of simple chemical properties of
amino acids to a complex analysis of the substitutions found in secondary structural
domains of proteins. Because most of these tables are designed to align proteins on the
basis of some such feature of the amino acids, and not on an evolutionary model, they are
not particularly suitable for evolutionary analysis. They can be very useful, however, for
discovering structural and functional relationships, or family relationships among pro-
teins. A sequence alignment program that uses a combination of these tables has been
found to be particularly useful for detecting distant protein relationships (Argos 1987;
Rechid et al. 1989). There have been extensive comparisons of the usefulness of various
amino acid substitution matrices for aligning sequences, for finding similar sequences in a
protein sequence database, or for aligning similar sequences based on structure that are
described on the book Web site.

Table 3.3. Criteria used in amino acid scoring matrices for sequence alignments

1. Simple identity, which scores only identical amino acids as a match and all others as a mismatch.

2. Genetic code changes, which score the minimum number of nucleotide changes to change a codon for
one amino acid into a codon for another, due to Fitch (1966), and also with added information based
on structural similarity of amino acid side chains (Feng et al. 1985). A similar matrix based on the
assumption that genetic code is the only factor influencing amino acid substitutions has been pro-
duced (Benner et al. 1994).

3. Matrices based on chemical similarity of amino acid side chains, molecular volume, and polarity and
hydrophobicity of amino acid side chains (see Vogt et al. 1995).

4. Amino acid substitutions in structurally aligned three-dimensional structures (Risler et al. 1988;
matrix JO93, Johnson and Overington 1993). A similar matrix was described by Henikoff and
Henikoff (1993). Sander and Schneider (1991) prepared a similar matrix based on these same substi-
tutions but augmented by substitutions found in proteins which are so similar to the structure-solved
group that they undoubtedly have the same three-dimensional structure.

5. Gonnet et al. (1994) have prepared a 400 X 400 dipeptide substitution matrix for aligning proteins
based on the possibility that amino acid substitutions at a particular site are influenced by neighbor-
ing amino acids, and thus that the environment of an amino acid plays a role in protein evolution.

6. Jones et al. (1994) have prepared a scoring matrix specifically for transmembrane proteins. This
matrix was prepared using an analysis similar to that used for preparing the original Dayhoff PAM
matrices, and therefore provides an estimate of evolutionary distances among members of this class of
proteins.
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Nucleic Acid PAM Scoring Matrices

Just as amino acid scoring matrices have been used to score protein sequence alignments,
nucleotide scoring matrices for scoring DNA sequence alignments have also been devel-
oped. The DNA matrix can incorporate ambiguous DNA symbols (see Table 2.1) and
information from mutational analysis, which reveals that transitions (substitutions
between the purines A and G or between the pyrimidines C and T) are more probable than
transversions (substitutions between purine to pyrimidine or pyrimidine to purine) (Li
and Graur 1991). These substitution matrices may be used to produce global or local align-
ments of DNA sequences.

States et al. (1991) have developed a series of nucleic acid PAM matrices based on a
Markov transition model similar to that used to generate the Dayhoff PAM scoring matri-
ces. Although designed to improve the sensitivity of similarity searches of sequence
databases, these matrices also may be used to score nucleic acid alignments. The advantage
of using these matrices is that they are based on a defined evolutionary model and that the
statistical significance of alignment scores obtained by local alignment programs may be
evaluated, as described later in this chapter.

To prepare these DNA PAM matrices, a PAM1 mutation matrix representing 99%
sequence conservation and one PAM of evolutionary distance (1% mutations) was first
calculated. For a model in which all mutations from any nucleotide to any other are equal-
ly likely, and in which the four nucleotides are present at equal frequencies, the four diag-
onal elements of the PAM1 matrix representing no change are 0.99 whereas the six other
elements representing change are 0.00333 (Table 3.4). The values are chosen so that the
sum of all possible changes for a given nucleotide in the PAM1 matrix is 1% (3 X 0.00333
= 0.00999). For a biased mutation model in which a given transition is threefold more
likely than a transversion (Table 3.4), the oftf-diagonal matrix elements corresponding to
the one possible transition for each nucleotide are 0.006 and those for the two possible
transversions are 0.002, and the sum for each nucleotide is again 1% (0.006 + 0.002 +
0.002 = 0.01).

As with the amino acid matrices, the above matrix values are then used to produce log
odds scoring matrices that represent the frequency of substitutions expected at increasing

Table 3.4. Nucleotide mutation matrix for an evolutionary dis-
tance of 1 PAM, which corresponds to a probability of a change at
each nucleotide position of 1%

A. Model of uniform mutation rates among nucleotides

A G T C
A 0.99
G 0.00333 0.99
T 0.00333 0.00333 0.99
C 0.00333 0.00333 0.00333 0.99
B. Model of threefold higher transitions than transversions
A G T C
A 0.99
G 0.006 0.99
T 0.002 0.002 0.99
C 0.002 0.002 0.006 0.99

Values are frequency of change at each site, or of no change for all base
combinations.
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evolutionary distances. In terms of an alignment, the probability (s;) of obtaining a match
between nucleotides i and j, divided by the random probability of aligning i and j, is given
by

Sij = log (p; M;; | p; Pj) (4)

where M;; is the value in the mutation matrix given in Table 3.4, and p; and p; are the frac-
tional composition of each nucleotide, assumed to be 0.25. The base of the logarithm can
be any value, corresponding to multiplying every value in the matrix by the same constant.
With such scaling variations, the ability of the matrix to distinguish among significant and
chance alignments will not be altered. The resulting tables with s;; expressed in units of bits
(logarithm to the base 2) and rounded off to the nearest whole integer are shown in Table
3.5.

From these PAM1 matrices, additional log odds matrices at an evolutionary distance of
n PAMs may be obtained by multiplying the PAM1 matrix by itself n times. The ability of
each matrix to distinguish real from random nucleotide matches in an alignment, desig-
nated H, measured in bit units (log,) can be calculated using the equation

H=) pip;s;2% (5)
L]

where the s;; scores are also expressed in bit units. In Table 3.6 are shown the log odds val-
ues of the match and mismatch scores for PAM matrices at increasing evolutionary dis-
tances, assuming a uniform rate of mutation among all nucleotides. Also shown is the per-
centage of nucleotides that will be changed at that distance. The identity score will be 100
minus this value. This percentage is not as great as the PAM score due to expected back-
mutation over longer time periods. Also shown are the H scores of the matrices at each
PAM value.

Table 3.5. Nucleotide substitution matrix at T PAM of evo-
lutionary distance

A. Model of uniform mutation rates among nucleotides

A G T C
A 2
G -6 2
T —6 —6 2
C —6 —6 —6 2
B. Model of threefold higher transitions than transversions
A G T C
A 2
G -5 2
T -7 -7 2
C -7 -7 —5 2

Units are log odds scores obtained as described in the text.
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Gap Penalties

Table 3.6. Properties of nucleic acid substitution matrices assuming a uniform rate
of mutation among nucleotides

Percentage Match score Mismatch score Average information

PAM distance difference (bits) (bits) per position (bits)
10 9.4 1.86 —3.00 1.40
25 21.3 1.66 —1.82 0.92
50 36.5 1.34 —1.04 0.47
100 55.2 0.84 —0.44 0.13
125 60.8 0.65 —0.30 0.07

The following points may be made:

1. If comparing sequences that are quite similar, it is better to use a lower scoring matrix
because the information content of the small PAM matrices is relatively higher. As dis-
cussed earlier for lower-numbered Dayhoff PAM matrices for more-alike protein
sequences, a more optimal alignment will be obtained.

2. As the PAM distance increases, the mismatch scores in the biased mutational model in
Table 3.7 become positive and appear as conservative substitutions. Thus, the bias
model can provide considerably more information than the uniform mutation model
when aligning sequences that are distantly related (>30% different) and may be used
for this purpose (States et al. 1991).

3. The scoring matrices at large evolutionary distances provide very little information per
aligned nucleotide pair. When sequences have so little similarity, a much longer align-
ment is necessary to be significant.

As with amino acid scoring matrices, the average information content shown is only
achieved by using the scoring matrix that matches the percentage difference between the
sequences. For example, for sequences that are 21% different (79% identical), the matrix
at 25 PAM distance should be used. One cannot know ahead of time what the percentage
similarity or difference between two sequences actually is until an alignment is done, thus
a trial alignment must first be done. States et al. (1991) have calculated how efficient a
given scoring matrix is at achieving the highest possible score in aligning two sequences
that vary in their levels of similarity. Once the initial similarity score has been obtained
with these matrices, a more representative score can be obtained by using another PAM
matrix designed specifically for sequences at that level of similarity.

The inclusion of gaps and gap penalties is necessary in order to obtain the best possible
alignment between two sequences. A gap opening penalty for any gap (g) and a gap exten-

Table 3.7. Properties of nucleic acid substitution matrices assuming transitions are threefold
more frequent than transversions

Percentage  Match score  Transition  Transversion Average information

PAM distance  difference (bits) score (bits)  score (bits) per position (bits)
10 9.3 1.86 —2.19 —3.70 1.42
25 21.0 1.66 —1.06 —2.46 0.96
50 35.8 1.36 —0.37 —1.60 0.54
100 53.7 0.89 0.06 —0.86 0.19

150 62.9 0.57 0.16 —0.52 0.08
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sion penalty for each element in the gap () is most often used, to give a total gap score w,,
according to the equation

wy =g+ rx (6)

where x is the length of the gap. Note that in some formulations of the gap penalty, the
equation w, = g + r (x — 1) is used. Thus, the gap extension penalty is not added to the
gap opening penalty until the gap size is 2. Although this difference does not affect the
alignment obtained, one needs to distinguish which method is being used by a particular
computer program if the correct results are to be obtained. In the former case, the penal-
ty for a gap of size 1 is g + x, whereas in the latter case this value is g. The values for these
penalties have to be chosen to balance the scores in the scoring matrix that is used. Thus,
the Dayhoff log odds matrix at PAM250 is expressed in units of log;, which is approxi-
mately 1/3 bits, but if this matrix were converted to 1/2 bits, the same gap penalties would
no longer be appropriate.

If too high a gap penalty is used relative to the range of scores in the substitution matrix,
gaps will never appear in the alignment. Conversely, if the gap penalty is too low compared
to the matrix scores, gaps will appear everywhere in the alignment in order to align as many
of the same characters as possible. Fortunately, most alignment programs will suggest gap
penalties that are appropriate for a given scoring matrix in most situations. In the GCG and
FASTA program suites, the scoring matrix itself is formatted in a way that includes default
gap penalties. Examples of the values of ¢ and r used by various alignment programs are
shown on the book Web site. When deciding gap penalties for local alignment programs,
another consideration is that the penalties should be large enough to provide a local align-
ment of the sequences. Examples of suitable values are given in Table 3.10 on p. 114.
Altschul and Gish (1996) and Pearson (1996, 1998) have found that use of appropriate gap
penalties will provide an improved local alignment based on statistical analysis. These
studies are described in detail in the following section.

Mathematician Peter Sellers (1974) showed that if sequence alignment was formulated
in terms of distances instead of similarity between sequences, a biologically more appeal-
ing interpretation of gaps is possible. The distance is the number of changes that must be
made to convert one sequence into the other and represents the number of mutations that
will have occurred following separation of the genes during evolution; the greater the dis-
tance, the more distantly related are the sequences in evolution. In this case, substitution
produces a positive score of 1. Notice that the distance score plus the similarity score for
an alignment is equal to 1. Sellers proved that this distance formulation of sequence align-
ment has a desirable mathematical property that also makes evolutionary sense. If three
sequences, a, b, and ¢, are compared using the above scoring scheme, the distance score as
defined above is described as a metric that satisfies the triangle inequality relationship

d(a,b) + d(b,c) = d(a,c) (7)

where d(a,b) is the distance between sequences a and b, and likewise for the other two d
values. Expressed another way, if the three possible distances between three sequences are
obtained, then the distance between any first pair plus that for any second pair cannot
underscore the third pair. Violating this rule would not be consistent with the expected
evolutionary origin of the sequences. To satisfy the metric requirement, the scoring of
individual matches, mismatches, and gaps must be such that in an alignment of two iden-
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tical sequences a and a’, d(a,a’) must equal 0 and for two totally different sequences b and
b’, d(b,b’) must equal 1. For any other two sequences a and b, d(a,b) = d(b,a). Hence, it
is important that the distance score for changing one sequence character into a second is
the same as the converse score for changing the second into the first, if the distance score
of the alignment is to remain a metric and to make evolutionary sense. The above rela-
tionships were shown by Sellers to be true for gaps of length 1 in a sequence alignment. He
also showed that the smallest number of steps required to change one sequence into the
other could be calculated by the dynamic programming algorithm. The method was simi-
lar to that discussed above for the Needleman-Wunsch global and Smith-Waterman local
alignments, except that these former methods found the maximum similarity between two
sequences, as opposed to the minimum distance found by the Sellers analysis.

Subsequently, Smith et al. (1981) and Smith and Waterman (1981a,b) showed that gaps
of any length could also be included in an alignment and still provide a distance metric for
the alignment score. In this formulation, the gap penalty was required to increase as a func-
tion of the gap length. The argument was made that a single mutational event involving a
single gap of n residues should be more likely to have occurred than # single gaps. Thus, to
increase the likelihood of such gaps of length >1 being found, the penalty for a gap of
length n was made smaller than the score for n individual gaps. The simplest way of imple-
menting this feature of the gap penalty was to have the gap score w, be a linear function of
gap length by consisting of two parts, a larger gap opening penalty (g) and a smaller gap
extension penalty (r) for each extra position in the gap, or w, = g + rx, where x is the
length of the gap, as described above. This type of gap penalty is referred to as an affine gap
penalty in the literature. Any other formula for scoring gap penalties should also work,
provided that the score increases with length of the gap but that the score is less than x indi-
vidual gaps. Scoring of gaps by the above linear function of gap length has now become
widely used in sequence alignment. However, more complex gap penalty functions have
been used (Miller and Myers 1988).

Penalties for Gaps at the Ends of Alignments

Sequence alignments are often produced that include gaps opposite nonmatching charac-
ters at the ends of an alignment. These gaps may be given the same penalty score as gaps
inside of the alignment or, alternatively, they may not be given any penalty score. End gaps
were an important component in the mathematical formulation of both the similarity and
distance methods of sequence alignment for producing both global and local alignments.
Failure to include them in distance calculations can result in a failure to obtain distance
scores that make evolutionary sense (Smith et al. 1981). Examples of using or of not using
end gap penalties in the Needleman-Wunsch alignment are shown on the book Web site.
Without scoring end alignments, gaps may be liberally placed at the ends of alignments by
the dynamic programming algorithm to increase the matching of internal characters, as
opposed to including these gaps as a part of the overall alignment.

If comparing sequences that are homologous and of about the same length, it makes a
great deal of sense to include end gap penalties to achieve the best overall alignment. For
sequences that are of unknown homology or of different lengths, it may be better to use an
alignment that does not include end gap penalties (States and Boguski 1991). If one
sequence is expected to be contained within the other, it is reasonable to include end gap
penalties only for the shorter sequence. However, for any test alignment, these end penal-
ties should be included in at least one alignment to assure that they do not have an effect.
It is also important to use alignment programs that include them as an option.
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Parametric Sequence Alignments

Computer methods that find a range of possible alignments in response to varying the
scoring system used for matches, mismatches, and gaps, called parametric sequence com-
parisons (Waterman et al. 1992; Waterman 1994 and references therein), have been devel-
oped. There is also an effort to use scores such that the results of global and local types of
sequence alignments provide consistent results. For example, if two sequences are similar
along their entire lengths, both global and local methods should provide the same align-
ment. The program Xparal (Gusfield and Stelling 1996), which can perform this type of
analysis, is available from http://theory.cs.ucdavis.edu/~stevenk. The program runs on a
UNIX environment under X-Windows. When provided with two sequences and some of
the alignment parameters, such as gap score, the program displays graphically the types of
possible alignments when the remaining parameters are varied. Another sequence align-
ment program that performs parametric sequence alignment is the Bayes block aligner,
discussed below (p. 124).

Effects of Varying Mismatched Gap Penalties on Local Alignment Scores

Vingron and Waterman (1994) have reviewed the effect of varying the parameters of the
scoring system on the alignment of random DNA and protein sequences. To simplify the
number of parameters, a constant penalty for any size gap was used. If a very high mis-
match penalty is used relative to a positive score for a match, with zero gap penalty, the
local alignment of these sequences will not include any gaps and is defined as the longest
common subsequence. The global alignment with the same scoring parameters will have
no mismatches but will have many gaps so placed as to maximize the matches, and the
score will be positive. In this case, the score of the local alignment of the sequences is pre-
dicted to increase linearly with the length of the sequences being compared.

Another case of varying alignment is penalizing gaps heavily. Then the best scoring local
alignment between the sequences will be one that optimizes the score between matches and
mismatches, without any gaps. If both mismatches and gaps are heavily penalized, the
resulting alignment will also be a local alignment that contains the longest region of exact
matches. In the above two cases, the alignment score of the highest-scoring local alignment
will increase as the logarithm of the length of the sequences. Under these same conditions,
the score of the corresponding global alignment between the sequences will be negative.
The transition between a linear and logarithmic dependence of the local similarity score on
sequence length occurs when the score of the corresponding global alignment is zero.
When both the mismatch and gap penalties are varied between zero and a high negative
score, the number of possible alignments of random DNA sequences is very large.

Three general conclusions can be drawn from this theoretical study of random sequence
alignments: (1) Use of high mismatch and gap penalties that are greater than a match score
will find local alignments, of which there are relatively few in number; (2) when the penal-
ty for a mismatch is greater than twice the score for a match, the gap penalty becomes the
decisive parameter in the alignment; and (3) for a mismatch penalty less than twice the
score of a gap and a wide range of gap penalties, there are a large number of possible align-
ments that depend on both the mismatch and gap penalty scores.

Distinguishing local from global alignments has an important practical application. A
local alignment is rarely produced between random sequences. Accordingly, the signifi-
cance of a local alignment between real sequences may be readily calculated, as described
below. In contrast, the significance of a global alignment is difficult to determine since a
global alignment is readily produced between random sequences.
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Optimal Combinations of Scoring Matrices and Gap Penalties for Finding Related Proteins

The usefulness of combinations of scoring matrices and gap penalties for identifying relat-
ed proteins, including distantly related ones, has been compared (Feng et al. 1985; Doolit-
tle 1986; Henikoff and Henikoff 1993; Pearson 1995, 1996, 1998; Agarwal and States 1998;
Brenner et al. 1998). The method generally used is to start with a database of protein
sequences organized into families, either based on sequence similarity or structural simi-
larity (described in Chapters 7 and 9, respectively). A member of a family is then selected
and used as a query sequence in a search of the entire database from which the sequence
came, using a database similarity search method (FASTA, BLAST, SSEARCH), as described
in Chapter 7. These methods basically use the dynamic programming algorithm and a
choice of scoring matrix and gap penalties to produce alignment scores. Details of these
studies are described on the book Web site.

In summary, the following general observations have been made: (1) Some scoring
matrices are superior to others at finding related proteins based on either sequence or
structure. For example, matrices prepared by examining the full range of amino acid sub-
stitutions in families of related proteins, such as the BLOSUM62 matrix, perform better
than matrices based on variations in closely related proteins that are extrapolated to pro-
duce matrices for more distantly related sequences, such as the Dayhoff PAM250 matrix.
(2) Gap penalties that for a given scoring matrix are adjusted to produce a local alignment
are the most suitable. (3) To identify related sequences, the significance of the alignment
scores should be estimated, as described in the following section.

These methods provide the means to demonstrate sequence similarity in even the most
distantly related proteins. For closely related proteins, a PAM-type scoring matrix that
matches the evolutionary separation of the sequences may provide a higher-scoring align-
ment, as described on page 82. Another set of studies has suggested that a global alignment
algorithm in combination with scoring matrices that have all positive values and suitable
gap penalties can be used to align proteins that have limited sequence similarity (i.e., 25%
identity) but that have similar structure (Vogt et al. 1995; Abagyan and Batalov 1997).

ASSESSING THE SIGNIFICANCE OF SEQUENCE ALIGNMENTS

One of the most important recent advances in sequence analysis is the development of
methods to assess the significance of an alignment between DNA or protein sequences. For
sequences that are quite similar, such as two proteins that are clearly in the same family,
such an analysis is not necessary. A significance question arises when comparing two
sequences that are not so clearly similar but are shown to align in a promising way. In such
a case, a significance test can help the biologist to decide whether an alignment found by
the computer program is one that would be expected between related sequences or would
just as likely be found if the sequences were not related. The significance test is also need-
ed to evaluate the results of a database search for sequences that are similar to a sequence
by the BLAST and FASTA programs (Chapter 7). The test will be applied to every sequence
matched so that the most significant matches are reported. Finally, a significance test can
also help to identify regions in a single sequence that have an unusual composition sug-
gestive of an interesting function. Our present purpose is to examine the significance of
sequence alignment scores obtained by the dynamic programming method.

Originally, the significance of sequence alignment scores was evaluated on the basis of
the assumption that alignment scores followed a normal statistical distribution. If
sequences are randomly generated in a computer by a Monte Carlo or sequence shuffling
method, as in generating a sequence by picking marbles representing four bases or 20



ALIGNMENT OF PAIRS OF SEQUENCES 97

amino acids out of a bag (the number of each type is proportional to the frequency found
in sequences), the distribution may look normal at first glance. However, further analysis
of the alignment scores of random sequences will reveal that the scores follow a different
distribution than the normal distribution called the Gumbel extreme value distribution
(see p. 104). In this section, we review some of the earlier methods used for assessing the
significance of alignments, then describe the extreme value distribution, and finally discuss
some useful programs for this type of analysis with some illustrative examples.

The statistical analysis of alignment scores is much better understood for local align-
ments than for global alignments. Recall that the Smith-Waterman alignment algorithm
and the scoring system used to produce a local alignment are designed to reveal regions of
closely matching sequence with a positive alignment score. In random or unrelated
sequence alignments, these regions are rarely found. Hence, their presence in real sequence
alignments is significant, and the probability of their occurring by chance alignment of
unrelated sequences can be readily calculated. The significance of the scores of global align-
ments, on the other hand, is more difficult to determine. Using the Needleman-Wunsch
algorithm and a suitable scoring system, there are many ways to produce a global alignment
between any pair of sequences, and the scores of many different alignments may be quite
similar. When random or unrelated sequences are compared using a global alignment
method, they can have very high scores, reflecting the tendency of the global algorithm to
match as many characters as possible. Thus, assessment of the statistical significance of a
global alignment is a much more difficult task. Rather than being used as a strict test for
sequence homology, a global alignment is more appropriately used to align sequences that
are of approximately the same length and already known to be related. The method will
conveniently show which sequence characters align. One can then use this information to
perform other types of analyses, such as structural modeling or an evolutionary analysis.

Significance of Global Alignments

In general, global alignment programs use the Needleman-Wunsch alignment algorithm
and a scoring system that scores the average match of an aligned nucleotide or amino acid
pair as a positive number. Hence, the score of the alignment of random or unrelated
sequences grows proportionally to the length of the sequences. In addition, there are many
possible different global alignments depending on the scoring system chosen, and small
changes in the scoring system can produce a different alignment. Thus, finding the best
global alignment and knowing how to assess its significance is not a simple task, as reflect-
ed by the absence of studies in the literature.

Waterman (1989) provided a set of means and standard deviations of global alignment
scores between random DNA sequences, using mismatch and gap penalties that produce a
linear increase in score with sequence length, a distinguishing feature of global alignments.
However, these values are of limited use because they are based on a simple gap scoring
system. Abagyan and Batalov (1997) suggested that global alignment scores between unre-
lated protein sequences followed the extreme value distribution, similar to local alignment
scores. However, since the scoring system that they used favored local alignments, these
alignments they produced may not be global but local (see below). Unfortunately, there is
no equivalent theory on which to base an analysis of global alignment scores as there is for
local alignment scores. For zero mismatch and gap penalties, which is the most extreme
condition for a global alignment giving the longest subsequence common to two
sequences, the score between two random or unrelated sequences P is proportional to
sequence length 1, such that P = ¢n (Chvital and Sankoff 1975), but it has not proven pos-
sible to calculate the proportionality constant ¢ (Waterman and Vingron 1994a).
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To evaluate the significance of a Needleman-Wunsch global alignment score, Dayhoff
(1978) and Dayhoff et al. (1983) evaluated Needleman-Wunsch alignment scores for a large
number of randomized and unrelated but real protein sequences, using their log odds scor-
ing matrix at 250 PAMs and a constant gap penalty. The distribution of the resulting ran-
dom scores matched a normal distribution. On the basis of this analysis, the significance of
an alignment score between two apparently related sequences A and B was determined by
obtaining a mean and standard deviation of the alignment scores of 100 random permuta-
tions or shufflings of A with 100 of B, conserving the length and amino acid composition of
each. If the score between A and B is significant, the authors specify that the real score
should be at least 3—5 standard deviations greater than the mean of the random scores. This
level of significance means that the probability that two unrelated sequences would give
such a high score is 1.35 X 107> (3 s.0.s) and 2.87 X 107° (5 s.D.s). In evaluating an align-
ment, two parameters were varied to maximize the alignment score: First, a constant called
the matrix bias was added to each value in the scoring matrix and, second, the gap penalty
was varied. The statistical analysis was then performed after the score between A and B had
been maximized. Recall that the log odds PAM250 matrix values vary from —7 to 17 in units
of 1/3 bits. The bias varied from 2 to 20 and had the effect of increasing the score by the bias
times the number of alignment positions where one amino acid is matched to another. As
a result, the alignment frequently decreases in length because there are fewer gaps, assum-
ing the gap penalty is not also changed. It was these optimized alignments on which the sig-
nificance test was performed. Feng et al. (1985) used the same method to compare the sig-
nificance of alignment scores obtained by using different scoring matrices. They used
25-100 pairs of randomized sequences for each test of an alignment.

There are several potential problems with this approach, some of which apply to other
methods as well. First, the method is expensive in terms of the number of computational
steps, which increase at least as much as the square of sequence length because many
Needleman-Wunsch alignments must be done. However, this problem is much reduced
with the faster computers and more efficient algorithms of today. Second, if the amino acid
composition is unusual, and if there is a region of low complexity (for example, many
occurrences of one or two amino acids), the analysis will be oversimplified. Third, when
natural sequences were compared more closely, the patterns found did not conform to a
random set of the basic building blocks of sequences but rather to a random set of sequence
segments that were varying. Consider use of the 26-letter alphabet in English sentences.
Alphabet letters do not appear in any random order in these sentences but rather in a
vocabulary of meaningful words. What happens if sentences, which are made up of words,
are compared? On the one hand, if just the alphabet composition of many sentences is
compared, not much variation is seen. On the other hand, if words are compared, much
greater variation is found because there are many more words than alphabet characters. If
random sequences are produced from segments of sequences, rather than from individual
residues, more variation is observed, more like that observed when unrelated natural
sequences are compared. The increased variation found among natural sequences is not
surprising when one thinks of DNA and proteins as sources of information. For example,
protein-encoding regions of DNA sequences are constrained by the genetic code and by
amino acid patterns that produce functional domains in proteins.

Lipman et al. (1984) analyzed the distribution of scores among 100 vertebrate nucleic
acid sequences and compared these scores with randomized sequences prepared in differ-
ent ways. When the randomized sequences were prepared by shuffling the sequence to
conserve base composition, as was done by Dayhoff and others, the standard deviation was
approximately one-third less than the distribution of scores of the natural sequences. Thus,
natural sequences are more variable than randomized ones, and using such randomized
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sequences for a significance test may lead to an overestimation of the significance. If,
instead, the random sequences were prepared in a way that maintained the local base com-
position by producing them from overlapping fragments of sequence, the distribution of
scores has a higher standard deviation that is closer to the distribution of the natural
sequences. The conclusion is that the presence of conserved local patterns can influence the
score in statistical tests such that an alignment can appear to be more significant than it
actually is. Although this study was done using the Smith-Waterman algorithm with nucle-
ic acids, the same cautionary note applies for other types of alignments. The final problem
with the above methods is that the correct statistical model for alignment scores was not
used. However, these earlier types of statistical analysis methods set the stage for later ones.

The GCG alignment programs have a RANDOMIZATION option, which shuffles the
second sequence and calculates similarity scores between the unshuffled sequence and each
of the shuffled copies. If the new similarity scores are significantly smaller than the real
alignment score, the alignment is considered significant. This analysis is only useful for
providing a rough approximation of the significance of an alignment score and can easily
be misleading.

Dayhoff (1978) and Dayhoff et al. (1983) devised a second method for testing the relat-
edness of two protein sequences that can accommodate some local variation. This method
is useful for finding repeated regions within a sequence, similar regions that are in a dif-
ferent order in two sequences, or a small conserved region such as an active site. As used
in a computer program called RELATE (Dayhoff 1978), all possible segments of a given
length of one sequence are compared with all segments of the same length from another.
An alignment score using a scoring matrix is obtained for each comparison to give a score
distribution among all of the segments. A segment comparison score in standard deviation
units is calculated as the difference between the value for real sequences minus the average
value for random sequences divided by the standard deviation of the scores from the ran-
dom sequences. A version of the program RELATE that runs on many computer platforms
is included with the FASTA distribution package by W. Pearson. An example of the output
of the RELATE program for the phage N and P22 repressor sequences is shown in Table
3.8. This program also calculates a distribution based on the normal distribution, thus it
provides only an approximate indication of the significance of an alignment.

Modeling a Random DNA Sequence Alignment

The above types of analyses assume that alignment scores between random sequences fol-
low a normal distribution that can be used to test the significance of a score between two
test sequences. For a number of reasons, mathematicians were concerned that this statisti-
cal model might not be correct. Let’s start by creating two aligned random DNA sequences
by drawing pairs of marbles from a large bag filled with four kinds of labeled marbles. The
marbles are in equal proportions and labeled A, T, G, and C to represent an assumed equal
representation of the four nucleotides in DNA. Now consider the probability of removing
10 identical pairs representing 10 columns in an alignment between two random
sequences. The probability of removing an identical pair (an A and another A) is 1/4 X 1/4,
but there are 4 possible identical pairs (A/A, C/C, G/G, and T/T), so that the probability of
removing any identical pair is 4 X 1/4 X 1/4 = 1/4 and that for removing 6 identical pairs
is (1/4)° = 2.4 X 10 *. The probability of drawing a mismatched pair is 1 — 1/4 = 3/4, and
that of drawing 6/6 mismatched pairs (3/4)° = 0.178. Most random alignments produced
in this manner will have a mixture of a few matches and many mismatches.

The calculations are a little more complex if the four nucleotides are not equally repre-
sented, but the results will be approximately the same. The probability of drawing the same
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Table 3.8. Distribution of alignment scores produced by program RELATE

< =120 [V
-115 0
-110 (VI
-105 0 :
-100 0 :

-95 0
-90 0 :
-85 0
-80 0 :
-75 0 :
-70 0 :
-65 9 :.
-60 69 :
-55 293
-50 932
-45 1868 :
-40 3214 :
-35 4784 :
-30 5858 :

0 =25 6091 :
-20 5384 :
-15 4470 :

1 -10 2960 :
-5 2076 :

0 1131 :

2 5 590 :
10 288 :

3 15 154 :
20 67 =

25 34 :
4 30 18 :.
35 10 :.
5 40 1 ..
45 0

50 0 :

6 55 0 :
60 0 :

65 0 :

7 70 0 :
75 0 :

8 80 0 :
85 0 :

90 0 :

95 0 :

100 0 :
105 0 :
110 0 :
115, 0 :
120 0 :
125 0

> 125 0

40301 comparisons of window: 25, mean score: -27.3 (13.34)
matrix file: PAM250
29 segments >= 4 sd above mean

The sequences of two phage repressors were broken down into overlapping 25-amino-
acid segments, and all 40,301 combinations of these segments were compared. The first
column gives the approximate location of the number of standard deviations (13.34)
from the mean score of —27.3. The second column is increasing ranges of the alignment
score, and the third, the number of segment alignment scores, that fall within the range.
Twenty-nine scores were greater than 3 standard deviations from the mean. Thus, these
two sequences share segments that are significantly more related than the average seg-
ment, and the proteins share strong regions of local similarity. In such cases of strong
local similarity, a local alignment program such as LFASTA, PLFASTA, or LALIGN can
provide the alignments and a more detailed statistical analysis, as described below. Graph
is truncated on right side.
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pair is p, where p = pa* + pc® + pg® + pr’, where py is the proportion of nucleotide X.
p is an important parameter to remember for the discussion below. An even more compli-
cated situation is when the two random sequences to align have different nucleotide dis-
tributions. One way would be to use an average p for the two sequences. This example illus-
trates the difficulty of modeling sequence alignments between two different organisms that
have a different base composition.

The above model is not suitable for predicting the number of sequentially matched posi-
tions between random sequences of a given length. To estimate this number, a DNA
sequence alignment may also be modeled by coin-tossing experiments (Arratia and Water-
man 1989; Arratia et al. 1986, 1990). Random alignments will normally comprise mixtures
of matches and mismatches, just as a series of coin tosses will produce a mixture of heads
and tails. The chance of producing a series of matches in a sequence alignment with no mis-
matches is similar to the chance of tossing a coin and coming up with a series of only heads.
The numbers of interest are the highest possible score that can be obtained and the proba-
bility of obtaining such a score in a certain number of trials. In such models, coins are usu-
ally considered to be “fair” in that the probability of a head is equal to that of a tail. The coin
in this example has a certain probability p of scoring a head (H) and g = 1 — p of scoring a
tail (T). The longest run of heads R has been shown by Erdos and Rényi to be given by
logy,,(n). If p = 0.5 as for a normal coin, then the base of the logarithm is 1/p = 2. For the
example of n = 100 tosses, then R = log,100 = log.100/log.2 = 4.605/0.693 = 6.65.

To use the coin model, an alignment of two random sequences a = a,, a,, a3---a, and
b = by, by, bs---b,, each of the same length 7 is converted to a series of heads and tails. If
a; = b; then the equivalent toss result is an H, otherwise the result is a T. The following
example illustrates the conversion of an alignment to a series of H and T tosses.

a;aasz---a,-—-> HTH ---
b; b, bs---b,  where a; = b; and a; = b; only (8)

The longest run of matches in the alignment is now equivalent to the longest run of
heads in the coin-tossing sequence, and it should be possible to use the Erdos and Rényi
law to predict the longest run of matches. This score, however, only applies to one partic-
ular alignment of random sequences, such as generated above by the marble draw. In per-
forming a sequence alignment, two sequences are in effect shifted back and forth with
respect to each other to find regions that can be aligned. In addition, the sequences may be
of different lengths. If two random sequences of length m and # are aligned in this same
manner, the same law still applies but the length of the predicted match is logy,,(1mn)
(Arratia et al. 1986). If m = n, the longest run of matches is doubled. Thus, for DNA
sequences of length 100 and p = 0.25 (equal representation of each nucleotide), the longest
expected run of matches is 2 X log;,,(n) = 2 X 1ogs100 = 2 X log.100 / log.4 = 2 X 4.605
/ 1.386 = 6.65, the same number as in the coin-tossing experiment. This number corre-
sponds to the longest subalignment that can be expected between two random sequences
of this length and composition.

A more precise formula for the expectation value or mean of the longest match M and
its variance has been derived (Arratia et al. 1986; Waterman et al. 1987; Waterman 1989).

E (M) = log,,,(mn) + logy;,(q) + vy log(e) — 1/2 (9)



102

CHAPTER 3

Var [M(n,m)] = [wlogl/p(e)]2/6 + 1/12 (10)

where y = 0.577 is Euler’s number and ¢ = 1 — p. Note that Equation 9 can be simplified
E (M) = logy,,(Kmn) (11)

where K is a constant that depends on the base composition.

Equation 11 also applies when there are k mismatches in the alignment, except that
another term = k log,,, log,,,(qmn) appears in the equation (Arratia et al. 1986). K, the
constant in Equation 11, depends on k. The log log term is small and can be replaced by a
constant (Mott 1992), and simulations also suggest that it is not important (Altschul and
Gish 1996). Altschul and Gish (1996) have found a better match to Equation 11 when the
length of each sequence is reduced by the expected length of a match. In the example given
above with two sequences of length 100, the expected length of a match was 6.65. As the
sequences slide align each other, it is not possible to have overlaps on the ends that are
shorter than 7 because there is not enough sequence remaining. Hence, the effective length
of the sequences is 100 — 7 = 93 (Altschul and Gish 1996). This correction is also used for
the calculation of statistical significance by the BLAST algorithm discussed in Chapter 7.

Equation 11 is fundamentally important for calculating the statistical significance of
alignment scores. Basically, it states that as the lengths of random or unrelated sequences
increase, the mean of the highest possible local alignment scores will be proportional to the
logarithm of the product of the sequence lengths, or twice the logarithm of the sequence
length if the lengths are equal (since log (nn) = 2 log n). Equation 10 also predicts a con-
stant variance among scores of random or unrelated sequences, and this prediction is also
borne out by experiment. It is important to emphasize once again that this relationship
depends on the use of scoring parameters appropriate for a local alignment algorithm, such
as 1 for a match and —0.9 for a mismatch, or a scoring matrix that scores the average
aligned position as negative, and also upon the use of sufficiently large gap penalties. This
type of scoring system gives rise to positive scoring regions only rarely. The significance of
these scores can then be estimated as described herein.

Another way of describing the result in Equation 11 uses a different parameter, \, where
N\ = log.(1/p) (Karlin and Altschul 1990)

E (M) = [log, (Kmn)] / \ (12)

Recall that p is the probability of a match between the same two characters, given above as
1/4 for matching a random pair of DNA bases, assuming equal representation of each base
in the sequences. p may also be calculated as the probability of a match averaged over scor-
ing matrix and sequence composition values. Instead, it is A that is more commonly used
with scoring matrix values. The calculation of X and also of K is described below and in
more detail on the book Web site.

It is more useful in sequence analysis to use alignment scores instead of lengths for com-
paring alignments. The expected or mean alignment length between two random sequences
given by Equations 11 and 12 can be easily converted to an alignment score just by using
match and mismatch or scoring matrix values along with some simple normalization pro-
cedures. Thus, in addition to predicting length, these equations can also predict the mean
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or expected value of the alignment scores E(S) between random sequences of lengths m and
n. Assessing statistical significance then boils down to calculating the probability that an
alignment score between two random or unrelated sequences will actually go above E(S).
Hence, the expected score or mean extreme score is

E(S) = [log,. (Kmn)] / N (13)

Another important mathematical result bearing on this question was that the number
of matched regions that exceeds the mean score E(S) in Equation 13 could be predicted by
the Poisson distribution where the mean x of the Poisson distribution is given by E(S)
(Waterman and Vingron 1994b). The Poisson distribution applies when the probability of
success in a single trial is small, but the number of trials is large (as in comparing many
pairs of random sequences or a test sequence to many scrambled versions of a second
sequence) so that some trials end in success but others do not. Some alignments do not
reach the expected score, but others will reach or even exceed that score. The Poisson dis-
tribution gives the probability P, of the number of successes, i.e., 0, 1, 2, 3 . . . when the
average number is x and is given by the formula P,, = e * x" / n!. The probability that no
score from many test alignments will exceed x is therefore approximated by (P, = e ).
The probability that at least one score exceeds xis 1 — Py and is given by P (S > x) = 1 —¢™ %,
so that

P(S<x)=exp(— E(S))
= exp (— Kmne ™) (14)

P(S>x) =1 — exp (— Kmne ™) (15)

Equation 15 estimates the probability of a score greater than x between two random
sequences and is identical to the extreme value distribution described below. The Poisson
approximation provides a very convenient way to estimate K and A from alignment scores
between many random or unrelated sequences by using the fraction of alignments that
have a score less than value x (see book Web site).

Alignments with Gaps

It was predicted on mathematical grounds and shown experimentally that a similar type of
analysis holds for sequence alignments that include gaps (Smith et al. 1985). Thus, when
Smith et al. (1985) optimally aligned a large number of unrelated vertebrate and viral DNA
sequences of different lengths (n and m) and their complements to each other, using a
dynamic programming local alignment method that allowed for a score of + 1 for matches,
—0.9 for mismatches, and —2 for a single gap penalty (longer gaps were not considered in
order to simplify the analysis), a plot of the similarity score (S) versus the log,/p(nm) pro-
duced a straight line with approximately constant variance. This result is as expected in the
above model except that with the inclusion of gaps, the slope was increased and was of the
form
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Smean = 2.55 (log,/p(mn)) — 8.99 (16)

with constant standard deviation o = 1.78. This result was then used to calculate how
many standard deviations were between the predicted mean and variance of the local align-
ment scores for unrelated sequences and the scores for test pairs of sequences. If the actu-
al alignment score exceeded the predicted Sp,c.n by several standard deviations, then the
alignment score should be significant. For example, the expected score between two
unrelated sequences of lengths 2948 and 431, average p = 0.279, was Spean = 2.55 X
10g1/0.270(2948 X 431) — 8.99 = 2.55 X (log.(2948 X 431)/log.(1/0.279)) — 8.99 = 2.55
X 14.1/1.28 — 8.99 = 28.1 — 8.99 = 19.1. The actual optimal alignment score between
the two real sequences of these lengths was 37.20, which exceeds the alignment score
expected for random sequences by (37.20 — 19.1) / 1.78 = 10.20. Is this number of stan-
dard deviations significant? Smith et al. (1985) and Waterman (1989) suggested the use of
a conservative statistic known as Chebyshev’s inequality, which is valid for many proba-
bility distributions: The probability that a random variable exceeds its mean is less than or
equal to the square of 1 over the number of standard deviations from the mean. In this
example where the actual score is 10 standard deviations above the mean, the probability
is (1/10)> = 0.01.

Waterman (1989) has noted that for low mismatch and gap penalties, e.g., +1 for
matches, —0.5 for mismatches, and —0.5 for a single gap penalty, the predicted alignment
scores between random sequences as estimated above are not accurate because the score
will increase linearly with sequence length instead of with the logarithm of the length. The
linear relationship arises when the alignment is more global in nature, and the logarithmic
relationship when it is local. Waterman (1989) has fitted alignment scores from a large
number of randomly generated DNA sequences of varying lengths to either the predicted
log(n) or n linear relationships expected for low- and high-valued mismatch and gap
penalties. The results provide the mean and standard deviation of an alignment score for
several scoring schemes, assuming a constant gap penalty.

With further mathematical analysis, it became apparent that the expected scores
between alignment of random and unrelated sequences follow a distribution called the
Gumbel extreme value distribution (Arratia et al. 1986; Karlin and Altschul 1990). This
type of distribution is typical of values that are the highest or best score of a variable, such
as the number of heads only expected in a coin toss discussed previously. Subsequently,
S. Karlin and S. Altschul (1990, 1993) further developed the use of this distribution for
evaluating the significance of ungapped segments in comparisons between a test sequence
and a sequence database using the BLAST program (for review, see Altschul et al. 1994).
The method is also used for evaluating the statistical features of repeats and amino acid
patterns and clusters in the same sequence (Karlin and Altschul 1990; Karlin et al. 1991).
The program SAPS developed by S. Karlin and colleagues at Stanford University and avail-
able at http://ulrec3.unil.ch/software/software.html provides this type of analysis. The
extreme value distribution is now widely used for evaluating the significance of the score
of local alignments of DNA and protein sequence alignments, especially in the context of
database similarity searches.

The Gumbel Extreme Value Distribution

When two sequences have been aligned optimally, the significance of a local alignment
score can be tested on the basis of the distribution of scores expected by aligning two ran-
dom sequences of the same length and composition as the two test sequences (Karlin and
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Altschul 1990; Altschul et al. 1994; Altschul and Gish 1996). These random sequence align-
ment scores follow a distribution called the extreme value distribution, which is somewhat
like a normal distribution with a positively skewed tail in the higher score range. When a
set of values of a variable are obtained in an experiment, biologists are used to calculating
the mean and standard deviation of the entire set assuming that the distribution of values
will follow the normal distribution. For sequence alignments, this procedure would be like
obtaining many different alignments, both good and bad, and averaging all of the scores.
However, biologically interesting alignments are those that give the highest possible scores,
and lower scores are not of interest. The experiment, then, is one of obtaining a set of val-
ues, and then of using only the highest value and discarding the rest. The focus changes
from the statistical approach of wanting to know the average of scores of random
sequences, to one of knowing how high a value will be obtained next time another set of
alignment scores of random sequences is obtained.

The distribution of alignment scores between random sequences follows the extreme
value distribution, not the normal distribution. After many alignments, a probability dis-
tribution of highest values will be obtained. The goal is to evaluate the probability that a
score between random or unrelated sequences will reach the score found between two real
sequences of interest. If that probability is very low, the alignment score between the real
sequences is significant and the sequence similarity score is significant.

The probability distribution of highest values in an experiment, the extreme value dis-
tribution, is compared to the normal probability distribution in Figure 3.17. The equations
giving the respective y coordinate values in these distributions, Y., and Y,,, are

Y., =exp[ —x — e *] for the extreme value distribution (17)

— 04 0.4

Figure 3.17. Probability values for the extreme value distribution (A) and the normal distribution
(B). The area under each curve is 1.
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Y, = 1/V (2m) exp [(— x%)/2] for the normal distribution (18)

The area under both curves is 1. The normal curve is symmetrical about the expectation
value or mean at x = 0, such that the area under the curve below the mean (0.5) is the same
as that above the mean (0.5) and the variance o is 1. The probability of a particular value
of x for the normal distribution is obtained by calculating the area under curve B, usually
between —x and +x. For x = 2, often used as an indication of a significant deviation from
the mean, the area between —2 and +2 is 0.9544. For the extreme value distribution, the
expectation value or mean of x is the value of the Euler-Mascheroni constant, 0.57722 . . .
and the variance of x, 02, is the value of w* / 6 = 1.6449. The probability that score S will
be less than value x, P ( S < x), is obtained by calculating the area under curve A from —o
to x, by integration of Equation 17 giving

P(S<x)=exp[—e 7] (19)
and the probability of S = x is 1 minus this probability
PS=x)=1—exp[ —e 7] (20)

For the extreme value distribution, the area below x = 0, which represents the peak or
mode of the distribution, is 1/e or 0.368 of the total area of 1, and the area above the mean
is 1 — 0.368 = 0.632. Atavalue of x = 2, Yev = 0.118and P (S <2) =exp [ —e *] =
0.873. Thus, just over 0.87 of the area under the curve is found below x = 2. An area of
0.95 is not reached until x = 3. The difference between the two distributions becomes even
greater for larger values of x. As a result, for a variable whose distribution comes from
extreme values, such as random sequence alignment scores, the score must be greater than
expected from a normal distribution in order to achieve the same level of significance.

The above equations are modified for use with scores obtained in an analysis. For a vari-
able x that follows the normal distribution, values of x are used to estimate the mean m and
standard deviation o of the distribution, and the probability curve given by Equation 18
then becomes

Yn = 1/(eV 2m) exp [— (x — m)*207] (21)

The probability of a particular value of x can be estimated by using m and o to estimate the
number of standard deviations from the mean, Z, where Z = (x — m)/c. Similarly, Equa-
tions 17 and 20 can be modified to accommodate the extreme values such as sequence
alignment scores

P(S=x)=1—exp[— e 2>~ W] (22)
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where u is the mode, highest point, or characteristic value of the distribution, and N\ is
the decay or scale parameter. As is apparent in Equation 22, N converts the experimen-
tally measured values into standard values of x after subtraction of the mode from each
score.

It is quite straightforward to calculate u# and A\, and several methods using alignment
scores are discussed on the book Web site. There is an important relationship between u
and \, and the mean and standard deviation of a set of extreme values. The mean and stan-
dard deviation do not only apply to the normal distribution, but in fact are mathemati-
cally defined for any probability distribution. The mean of any set of values of a variable
may always be calculated as the sum of the values divided by their number. The mean m
or expected value of a variable x, E (x), is defined as the first moment of the values of the
variable around the mean. From this definition, the mean is that number from which the
sum of deviations to all values is zero. The variance o is the second moment of the values
about the mean and is the sum of the squares of the devations from the mean divided by
the number of observations less one (n — 1). The mean x and standard deviation o of a
set of extreme values can be calculated in the same way, and then u and \ can be calculat-
ed using the following equations derived by mathematical evaluation of the first and sec-
ond moments of the extreme value distribution (Gumbel 1962; Altschul and Erickson
1986).

X=7/(cV6) =12825/¢ (23)

u=x—vy/A=x—04500 o (24)

where vy was already introduced. Equation 23 is derived from the ratio of the variance o
of the two distributions in Figure 3.17, or 1 to m /6. Equation 24 is derived from the
observation that the mode or the EV distribution (zero in Fig. 3.17) has the value of 1y less
than the mean. However, the value of y must be scaled by the ratio of the standard devia-
tions. Hence y / N is subtracted from the mean. This method of calculating u and X\ from
means and standard deviations is called the method of moments.

As with the normal distribution, z scores may be calculated for each extreme value x,
where z = (x—m) / o is the number of standard deviations from the mean m to each score.
z scores are used by the FASTA, version 3, programs distributed by W. Pearson (1998).
Equation 22 may be written in a form that directly uses z scores to evaluate the probabil-
ity that a particular score Z exceeds a value z,

P(Z>2)=1—exp(— ¢ 128252 — 0.5772) (25)

For sequence analysis, u and \ depend on the length and composition of the sequences
being compared, and also on the particular scoring system being used. They can be calcu-
lated directly or estimated by making many alignments of random sequences or shuffled
natural sequences, using a scoring system that gives local alignments. The parameters will
change when a different scoring system is used. Examples of programs that calculate these
values are given below.

For alignments that do not include any gaps, # and A may be calculated from the scor-
ing matrix. The scaling factor \ is calculated as the value of x, which satisfies the condition
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3 pipje =1 (26)

where p; and p; are the respective fractional representations of residues i and j in the
sequences, and s;; is the score for a match being i and j, taken from a log odds scoring
matrix. u, the characteristic value of the distribution, is given by (Altschul and Gish 1996)

u= (InKmn) /A (27)

where m and n are the sequence lengths and K is a constant that can also be calculated from
the values of p; and s;;. Note that this value originates from the coin toss analysis that gave
rise to Equation 14. Combining Equations 25 and 27 eliminates u and gives the following
relationship

P(S=x)=1—exp[—e "]
=1 — exp [ — e Ax — (anmn)//\)]
=1 - exp [_ e Ax + In Kmn] (28)
=1—exp [— Kmne ™ (29)

To facilitate calculations, a sequence alignment score S may also be normalized to pro-
duce a score S'. The effect of normalization is to change the score distribution into the
form shown above in Figure 3.17 with # = 0 and N = 1. From Equation 28, S’ is calculat-
ed by

S" = AS — In Kmn (30)
The probability of P (S’ > x) is then given by Equation 20 with S = §’

P(S=x)=1—exp[—e 7] (31)

The probability of a particular normalized score may then be readily calculated. This capa-
bility depends on a determination of the A and K to calculate the normalized scores S’ by
Equation 30.

The probability function P(S" = x) decays exponentially in x as x increases and P(S" =
x)=1—exp[— e *] —>e * Consequently, an important approximation for Equa-
tions 29 and 31 for the significant part of the extreme value distribution where x > 2 is
shown in Equations 32 and 33. Note that the replacement equations are single and not
double exponentials.

P(S=x) = Kmne ™ (32)

P(S§'=x)=¢ ~ (33)
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Table 3.9. Approximation of P(S'= x) by e ™~

x l-exp[ — e *] e™
0 0.63 1

1 0.308 0.368
2 0.127 0.135
3 0.0486 0.0498
4 0.0181 0.0183

A comparison of probability calculations using this approximation instead of that given in
Equation 31 is shown in Table 3.9. For x > 2, the estimates differ by less than 2%. The esti-
mate given in Equation 32 also provides a quicker method for estimating the significance
of an alignment score.

A Quick Determination of the Significance of an Alignment Score

Scoring matrices are most useful for statistical work if they are scaled in logarithms to the
base 2 called bits. Scaling the matrices in this fashion does not alter their ability to score
sequence similarities, and thereby to distinguish good matches from poor ones, but does
allow a simple estimation of the significance of an alignment. The actual alignment may
then be calculated by summing the matrix values for each of the aligned pairs, using matrix
values in bit units. If the actual alignment score in bits is greater than expected for align-
ment of random sequences, the alignment is significant.

For a typical amino acid scoring matrix and protein sequence, K = 0.1 and N\ depends
on the values of the scoring matrix. If the log odds matrix is in units of bits as described
above, then N = log.2 = 0.693, and the following simplified form of Equation 32 may be
derived (Altschul 1991) by taking logarithms to the base 2 and setting p as the probability
of the scores of random or unrelated alignments reaching a score of S or greater

log,p = log, (Kmn e ™)

= log, (Kmn) + log,(e ™)

= log, (Kmn) + (log.(e *%))/log.2

= log, (Kmn) — AS/log.2

= log, (Kmn) — S (34)

then S, the score corresponding to probability P, may be obtained by rearranging terms of
Equation 34 as follows

S = log, (Kmn) — log,P
= log, (K/P) + log,(nm) (35)

Since for most scoring matrices K == 0.1 and choosing P = 0.05, the first term is 1, and the
second term in Equation 35 becomes the most important one for calculating the score
(Altschul 1991), thus giving

S = log, (nm) (36)
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Example: Using the Extreme Value Distribution to Calculate the Significance of a
Local Alignment

Suppose that two sequences approximately 250 amino acids long are aligned by the
Smith-Waterman local alignment algorithm using the PAM250 matrix and a high
gap score to omit gaps from the alignment, and that the following alignment is found.

FWLEVEGNSMTAPTG
FWLDVQGDSMTAPAG

1. By Equation 36, a significant alignment between unrelated or random
sequences will have a score of S = log,(nm) = log,(250 X 250) = 16 bits.

2. The score of the above actual alignment is 75 using the scores in the Dayhoff
mutation data matrix (MDM) that provides log odds scores at 250 PAMs evo-
lutionary distance.

3. A correction to the alignment score must be made because the MDM table at
250 PAMs is not in bit units but in units of logarithm to the base 10, multiplied
by 10. These MDM scores actually correspond to units of 1/3 bits ([MDM score
in units of log;o] X 10 = [MDM score in bits of log, X log,10 | / 10 = [MDM
score in units of log;o X 10] X 0.333). Thus, the score of the alignment in bits
is 75/3 = 25 and 9 bits greater than the 16 expected by chance. Therefore, this
alignment score is highly significant.

4. Altschul and Gish (1996) have provided estimates of K = 0.09 and A = 0.229
for the PAM250 scoring matrix, for a typical amino acid distribution and for an
alignment score based on using a very high gap penalty. By Equations 3.30 and
3.31,S' = 0.229 X 75 — In (0.09 X 250 X 250) = 17.18 — 8.63 = 8.55 bits, and
P(S’ = 855) =1 — exp [— e ®°°] = 1.9 X 10~* Thus, the chance that an
alignment between two random sequences will achieve a score greater than or
equal to 75 using the MDM matrix is 1.9 X 10~ *. Note that the calculated S’ of
8.55 bits in step 4 is approximately the same as the 9 bits calculated by the sim-
pler method in step 3.

5. The probability may also be calculated by the approximation given in Equation
333P (S >x)=e = *P=19X10"

The Importance of the Type of Scoring Matrix for Statistical Analyses

Using a log odds matrix in bit units simplifies estimation of the significance of an align-
ment. The Dayhoff PAM matrices, the BLOSUM matrices, and the nucleic acid PAM scor-
ing matrices are examples of this type. Such matrices are also useful for finding local align-
ments because the matrix includes both positive and negative values. Another important
feature of the log odds form of the scoring matrix is that this design is optimal for assess-
ing statistical significance of alignment scores. A set of matrices, each designed to detect
similarity between sequences at a particular level, is best for this purpose. Use of a matrix
that is designed for aligning sequences that have a particular level of similarity (or evolu-
tionary distance) assures the highest-scoring alignment and therefore the very best esti-
mate of significance. Thus, lower-numbered PAM matrices are most suitable for aligning
sequences that are more similar. In the above example, the Dayhoff PAM250 matrix
designed for sequences that are 20% similar was used to align sequences that are approxi-
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mately 20% identical and 50% similar (identities plus common replacements in the align-
ment). Using a lower PAM120 matrix produces a slightly higher score for this alignment,
and thus increases the significance of the alignment score.

Another important parameter of the scoring matrix for statistical purposes is the expect-
ed value of the average amino acid pair, calculated as shown in Equation 37. This value
should be negative if alignment scores for the matrix are to be used for statistical tests, as
performed in the above example. Otherwise, in any aligned pair of sequences the scores
will increase with length faster than the logarithm of the length. Not all scoring matrices
will meet this requirement. To calculate the expected score (E), the score for each amino
acid pair (s;) is multiplied by the fractional occurrences of each amino acid (p; and p;). This
weighted score is then summed over all of the amino acid pairs. The expected values of the
log odds matrices such as the Dayhoff PAM, BLOSUM, JTT, JO93, PET91, and Gonnet92
matrices all meet this statistical requirement.

i

20
E=> > pipisi (37)

i=1j=1

For example, for the PAM120 matrix in one-half bits E = —1.64 and for PAM160 in one-
half bits, E = —1.14. Thus, scores obtained with these matrices may be used in the above
statistical analysis. Ungapped alignment scores obtained using the BLOSUM62 matrix may
also be subject to a significance test, as described above for the PAM matrices. The test is
valid because the expect score for a random pair of amino acids is negative (E = —0.52).
Because the matrix is in half-bit units, the alignment is significant when a score exceeds
16/0.52 = 32 half-bits.

To assist in keeping track of information, scoring matrices have appeared in a new for-
mat suitable for use by many types of programs. An example is given in Figure 3.18. The
matrix includes: (1) the scale of the matrix and the value of the statistical parameter \; (2)
E, the expect score of the average amino acid pair in the matrix, which if negative assures
that local alignments will be emphasized (Eq. 37); (3) H, the information content or
entropy of the matrix (Eq. 3) giving the ability of the matrix to discriminate related from
unrelated sequence alignments, not shown here; and (4) suitable gap penalties. The BLO-
SUM matrices are also available in this same format.

Significance of Gapped, Local Alignments

When random sequences of varying lengths are optimally aligned with the Smith-Water-
man dynamic programming algorithm using an appropriate scoring matrix and gap penal-
ties, the distribution of scores also matches the extreme value distribution (Altschul and
Gish 1996). Similarly, in optimally aligning a given sequence to a database of sequences,
and after removing the high scores of the closely related sequences, the scores of the unre-
lated sequences also follow this distribution (Altschul et al. 1994; Pearson 1996, 1998). In
these and other cases, optimal scores are found to increase linearly with log (1), where 7 is
the sequence length. Equation 36 predicts that the optimal alignment score (x) expected
between two random or unrelated sequences should be proportional to the logarithm of
the product of the sequence lengths, x = log,(nm). If the sequence lengths are approxi-
mately equal, n = m, then x should be proportional to log,(n*) = 2 log,(n), and the pre-
dicted score should also increase linearly with log(n). log,(n) is equivalent to log(n)
because, to change the base of a logarithm, one merely multiplies by a constant. In com-
paring one sequence of length m to a sequence database of length n, m is a constant and
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This matrix was produced by "pam" Version 1.0.6 [28-Jul-93]

PAM 120 substitution matrix, scale = 1n(2)/2 = 0.346574 [1/2 bits}]

Expected score = -1.64, Entropy = 0.979 bits
Lowest score = -8, Highest score = 12
A R N D C Q E G H I L K M F P S T W Y V B Z X *
3-3-1 60~3-1 0 1-3-1-3-2-2-41 1 1-7-4 0 0--1-1-8
-3 6-1-3-4 1-3-41-2-4 2-1-5-1-1-21-5-3-2-1-2-8
-1~-1 4 2-5 0 1 ¢ 2~-2~-4 1-3~-4-2 1 0-4-2-3 3 0~-1-8
0-3 2 5-7 1 3 0 06-3-5-1-4-7-3 0-1-8-5-3 4 3 -2-8
-3 -4 -5 -7 9-7-7-4-4-3-7-7-6-6~-4 0 -3 -8-1-3~6~7 -4 -8
-1 1 0 1~7 6 2 -3 3~3-2 0~-1-6 0~-2-2-6-5=-3 0 4 -1 -8
¢6-3 1 3-7 2 5-1-1-3-4+-1-3-7-2-1-2-8-5-3 3 4 -1 -8
1-4 0 0-4-3~1 5-4-4-5-3-4-5-21-1-8-6-2 0-2-2-8
-3 1 2 0-4 3-1-4 7 -4 «3 «2-4-3-1-2-3=-3-1-3 1 1-2-8
~-1-2-~2-3-3-3-3-4~-4 6 1-3 1 0-3-2 0«6=-2 3-3-3-1-8

-3 -4 -4-5-7-2-4-5-31 5-4 3 0-3-4-3-3-2 1-+-4-3-2--8
-2 2 1-1-7 0-1-3-2-3-45 0-7-2-1-1-5-5-4 0--1-2-8
-2 -1-3-4-6-1-3-4-41 3 0 8+-1«3-2-1-6-4 1-4-2-2-8
-d =5 «4 -7 -6 -6 =7 -5 -3 0 0-7 -1 8 ~5 -3 -4 -1 4 -3 -5 -6 -3 -8
1~1-2-3-4 0-2-2-1-3-3-2-3-5 6 1-1-7-6-2-2-1-2-8
1-11 0 0-2-11-2-2-4-1-2-31 3 2~2=3-2 0-1-1-8
1-2 0-1-3-2-2-1-3 0-3-1-1-4-1 2 4-6-3 0 0-2-1-8
-7 1-4-8-8-6-8-8-3-6-3-5-6-1-7-2-612 -2 -8 -6 -7 -5 -8
-4 -5 -2 -5-1-5-5-6-1-2-2-5-4 4-6-3-3-2 8-3-3-5-3-8
¢-3-3-3-3-3-3-2-3 3 1-4 1-3-2-2 0-8-3 5-3~3~1 ~8
-2 3 4-6 0 3 0 1-3-4 0-4-5-2 0 0-6-3-3 4 2-1-8
-1-1 0 3-7 4 4-2 1-3-3-1-2-6-1-1-2-7-5-3 2 4 -1 -8
-1 -2 -1 -2-4-1-1-2-2+~1-2-2-2~3=-2-1=~1+5=3-1-1-1-2-8
-8 -8 -8 -8 -8 -8-8-8-8-8-8-8-8--8-8-8--8--8-8--8--8-8--8 1

s NMPpDAID GBI OBOODZ WY % iHWHIBHR

Figure 3.18. Example of BLASTP format of the Dayhoff MDM giving log odds scores at 120 PAMs. Note that the matrix has
mirror-image copies of the same score on each side of the main diagonal. Besides the standard single-letter amino acid sym-
bols, there are four new symbols, B, Z, X, *. B is the frequency-weighted average of entries for D and N pairs, Z similarly for
Q and E entries, X similarly for all pairs in each row, and * is the lowest score in the matrix for matches with any other
sequence character that may be present.

the predicted score should increase linearly as log(n). This log(n) relationship has been
found in several studies of the distribution of optimal local alignment scores that have
included gap penalties (Smith et al. 1985; Arratia et al. 1986; Collins et al. 1988; Pearson
1996, 1998; for additional references, see Altschul et al. 1994). Thus, the same statistical
methods described above for assessing the significance of ungapped alignment scores may
also be used for gapped alignment scores. Methods for calculating the parameters K and A
for a given combination of scoring matrix methods and gap penalties are described on the
book Web site.

Methods for Calculating the Parameters of the Extreme Value Distribution

In the analysis by Altschul and Gish (1996), 10,000 random amino acid sequences of vari-
able lengths were aligned using the Smith-Waterman method and a combination of the
scoring matrix and a reasonable set of gap penalties for the matrix. The scores found by
this method followed the same extreme value distribution predicted by the underlying sta-
tistical theory. Values of K and \ were then estimated for each combination by fitting the
data to the predicted extreme value distribution. Some representative results are shown in
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Table 3.10. Readers should consult Tables V-VII in Altschul and Gish (1996) for a more
detailed list of the gap penalties tested.

Altschul and Gish (1996) have cautioned users of these statistical parameters. First, the
parameters were generated by alignment of random sequences that were produced assum-
ing a particular amino acid distribution, which may be a poor model for some proteins.
Second, the accuracy of A and K cannot be estimated easily. Finally, for gap costs that give
values of H < 0.15, the optimal alignment length is a significant fraction of the sequence
lengths and produces a source of error called the edge effect. The effect occurs when the
expected length of an alignment is a significant fraction of the sequence length, and, as dis-
cussed earlier, alignments between sequences that overlap at their ends cannot be com-
pleted. The expected length is then subtracted from the sequence length before \ is esti-
mated. If no such correction is done, A may be overestimated.

These values for gap penalties should also not be construed to represent the best
choice for a given pair of sequences or the only choices, simply because the statistical
parameters are available. The process of choosing a gap penalty remains a matter of rea-
soned choice. In trying the effects of varying the gap penalty, it is important to recognize
that as the gap penalty is lowered, the alignments produced will have more gaps and will
eventually change from a local to a global type of alignment, even though a local align-
ment program is being used. In contrast, higher H values are generated by a very large
gap penalty and produce alignments with no gaps (Table 3.10), thus suggesting an
increased ability to discriminate between related and unrelated sequences. In this
respect, Altschul and Gish (1996) note that beyond a certain point increasing the gap

Table 3.10. Statistical parameters for combination of scoring matrices and affine

gap penalties
Gap opening Gap extension

Scoring matrix penalty® penalty® K A H°
BLOSUMS50 o? 0-% 0.232 0.11 0.34
BLOSUMS50 15 8-15 0.09 0.222 0.31
BLOSUMS50 11 8-11 0.05 0.197 0.21
BLOSUMS50 11 1 — — —
BLOSUMS62 ot 0-00 0.318 0.13 0.40
BLOSUMS62 12 3-12 0.1 0.305 0.38
BLOSUMS62 8 7-8 0.06 0.270 0.25
BLOSUMS62 7 1 — — —
PAM250 oo 0-c 0.229 0.09 0.23
PAM250 15 5-15 0.06 0.215 0.20
PAM250 10 8-10 0.031 0.175 0.11
PAM250 11 1 — — —

Dashes indicate that no value can be calculated because the relationship between alignment
score and sequence length is linear and not logarithmic, indicating that the alignment is glob-
al, not local, in character. Statistical significance may not be calculated for these gap penalty-
scoring matrix combinations. The corresponding values for gap penalties define approximate
lower limits that should be used.

* A value of « for gap penalty will produce alignments with no gaps.

® The penalty for a gap opening of length 1 is the value of the gap opening penalty shown.
The gap extension penalty is not added until the gap length is 2. Make sure that the alignment
program uses this same scheme for scoring gaps. The extension penalty is shown over a range
of values; values within this range did not change K and A.

©The entropy in units of the natural logarithm.
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extension penalty does not change the parameters, indicating that most gaps in their
simulations are probably of length 1. However, reducing the gap penalty can also allow
an alignment to be extended and create a higher scoring alignment. Eventually, howev-
er, the optimal local alignment score between unrelated sequences will lose the log length
relationship with sequence length and become a linear function. At this point, gap penal-
ties are no longer useful for obtaining local alignments and the above statistical rela-
tionships are no longer valid.

The higher the H value, the better the matrix can distinguish related from unrelated
sequences. The lower the value of H, the longer the expected alignment. These conditions
may be better if a longer alignment region is required, such as testing a structural or func-
tional model of a sequence by producing an alignment. Conversely, scoring parameters
giving higher values of H should produce shorter, more compact alignments. If H < 0.15,
the alignments may be very long. In this case, the sequences have a shorter effective length
since alignments starting near the ends of the sequences may not be completed. This edge
effect can lead to an overestimation of A but was corrected for in the above table (Altschul
and Gish 1996).

Unfortunately, the above method for calculating the significance of an alignment score
may not be used to test the significance of a global alignment score. The theory does not
apply when these same substitution matrices are used for global alignments. Transforma-
tion of these matrices by adding a fixed constant value to each entry or by multiplying each
value by a constant has no effect on the relative scores of a series of global alignments.
Hence, there is no theoretical basis for a statistical analysis of such scores as there is for
local alignments (Altschul 1991).

As discussed in Chapter 7, two programs are commonly used for database similarity
searches: FASTA and BLAST. These programs both calculate the statistical significance of
the higher scores found with similar sequences, but the types of analyses used to deter-
mine the statistical significance of these scores are somewhat different. BLAST uses the
value of K and N found by aligning random sequences and Equation 29, where n and m
are shortened to compensate for inability of ends to align. FASTA calculates the statisti-
cal significance using the distribution of scores with unrelated sequences found during
the database search. In effect, the mean and standard deviation of the low scores found in
a given length range are calculated. These scores represent the expected range of scores of
unrelated sequences for that sequence length (recall that the local alignment scores
increase as the logarithm of the sequence length). The number of standard deviations to
the high scores of related sequences in the same length range (z score) is then determined.
The significance of this z score is then calculated according to the extreme value distribu-
tion expected of the z scores, given in Equation 25. This method is discussed in greater
detail in Chapter 7. Pearson (1996) showed that these two methods are equally useful in
database similarity searches for detecting sequences more distantly related to the input
query sequence.

Pearson (1996) has also determined the influence of scoring matrices and gap penal-
ties on alignment scores of moderately related and distantly related protein sequences in
the same family. For two examples of moderately related sequences, the choice of scor-
ing matrix and gap penalties (gap opening penalty followed by penalty for each addi-
tional gap position) did not matter, i.e., BLOSUM50 —12/—2, BLOSUM62 —8/—2,
Gonnet93 —10/—2, and PAM250 —12, —2 all produced statistically significant scores.
The scores of distantly related proteins in the same family depended more on the choice
of scoring matrix and gap penalty, and some scores were significant and others were not.
Pearson recommends using caution in evaluating alignment scores using only one par-
ticular combination of scoring matrix and gap penalties. He also suggests that using a
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larger gap penalty, e.g.,, —14, —2 with BLOSUMS50, can increase the selectivity of a
database search for similarity (fewer sequences known to be unrelated will receive a sig-
nificant alignment score).

A difficulty encountered by FASTA in calculating statistical parameters during a
database search is that of distinguishing unrelated from related sequences, because only
scores of unrelated sequences must be used. As score and sequence length information
is accumulated during the search, the scores will include high, intermediate, and some-
times low scores of sequences that are related to the query sequence, as well as low scores
and sometimes intermediate and even high scores of unrelated sequences. As an exam-
ple, a high score with an unrelated database sequence can occur because the database
sequence has a region of low complexity, such as a high proportion of one amino acid.
Regardless of the reason, these high scores must be pruned from the search if accurate
statistical estimates are to be made. Pearson (1998) has devised several such pruning
schemes, and then determined the influence of the scheme on the success of a database
search at demonstrating statistically significant alignment scores among members of the
same protein family or superfamily. However, no particular scheme proved to be better
than another.

Example: Use of the Above Principles to Estimate the Significance of a Smith-
Waterman Local Alignment Score

The alignment shown in step 1 in the next example box is a local alignment between
the phage A and P22 repressor protein sequences used previously. The alignment is
followed by a statistical analysis of the score in steps 2 and 3. To perform this analy-
sis, the second sequence (the P22 repressor sequence) was shuffled 1000 times and
realigned with the first sequence to create a set of random alignments. Two types of
shuffling are available: first, a global type of shuffling in which random sequences are
assembled based on amino acid composition and, second, a local one in which the
random sequences are assembled by random selection of an amino acid from a slid-
ing window of length 7 in the original sequence in order to preserve local amino acid
composition as described on page 98 (an example of a global analysis is shown in step
2). The distribution of scores in each case was fitted to the extreme value distribution
(Altschul and Gish 1996) to obtain estimates of A and K to be used in the estimation
of significance.

The program and parameters used were LALIGN (see Table 3.1 , p. 66), which
produces the highest-scoring n independent alignments and which was described
previously (p. 75), and the scoring matrix BLOSUMS50 with a gap opening penalty of
—12 and —2 for extra positions in the gap, with end gaps weighted. These programs
do not presently have windows or Web page interfaces, and must be run using com-
mand line options.

The program PRSS performs a statistical analysis based on the correct statistical
distribution of alignment scores, as shown below. PRSS version 3 (PRSS3) gives the
results as z scores.
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Example: Estimation of Statistical Significance of a Local Alignment Score

1. Optimal alignment of phage N\ and P22 repressor sequences using the program

LALIGN. The command line used was lalign -f -12 -g -2 lamcl.pro p22c2.pro
3> results.doc. The -f and -g flags indicate the gap opening and extension
parameters to be used, and are followed by the sequence files in FASTA format,
then a request for 3 alignments. No scoring matrix was specified and the default
BLOSUMS50 matrix was therefore used. Program output is directed to the file
results.doc, as indicated by the symbol >. The alignment shown is the highest-
scoring or optimal one using this scoring matrix and these gap penalties. The
next two alignments reported were only 9 and 15 amino acids long and each one
had a score of 35 (not shown). As discussed in the text, these alignments are
produced by repeatedly erasing the previous alignment from the dynamic pro-
gramming matrix and then rescoring the matrix to find the next best alignment.
The fact that the first alignment has a much higher score than the next two is an
indication that (1) there are no other reasonable alignments of these sequences
and (2) the first alignment score is highly significant.

LALIGN finds the best local alignments between two sequences
version 2.0u64 March 1998

Please cite:

X. Huang and W. Miller (1991) Adv. Appl. Math. 12:373-381

Comparigon of:

(A) lamcl.pro LAMCl REFORMAT of: cipro.pro check: -1 from: 1 - 237 aa
(B) p2ZcZ.pro P22C2 REFORMAT of: p22 check: 4729 from: 1 to - 216 aa
using matrix file: blosum50.mat, gap penalties: -12/-2

36.1% identity in 208 aa overlap; score: 401 [1/2 bits]

30 40 50 60 70 80
LAMC1 KKNELGLSQESVADKMGMGQSGVGALFNGINALNAYNAALLAKILKVSVEEFSPSIAREI
®22C2 RRKKLKIRQAALGKMVGVSNVAISQWERSETEPNGENLLALSKALQCSPDYLLKGDLSQT
20 30 40 50 60 70

90 100 110 ° 120 130 140
T.AMC1 YEMYEAVSMQPSLRSEYEYPVFSHVQAGMFSPELRTFTKGDAERWVSTTKKASDSAFWLE
P22C2 NVAYHS RHEP-—RGSYAAPLISWVSAGQWMEAVEPYHKRAIENWHDTTVDCSEDSFWLD
80 90 100 110 120

150 160 170 180 190 200
TAMC1 VEGNSMTAPTGSKPSFPDGMLILVDPEQAVEP——GDFCIARLGGD EFTFKKLIRDSGQV

P22C2 VQGDSMTAPAGL**SIPEGMIILVDPE*fVEPRNGKLVVAKLECENEATFKKLVMDAGRK
130 140 150 160 1790 180

210 220 230
LAMC1 FLQPLNPQYPMIPCNESCSVVGKVIASQ

222C2 FLKPLNPQYPMIEINGNCKIIGVVVDAK
190 200 210

2. Statistical analysis with program PRSS using a global shuffling strategy. The

program prompts for input information and requests the name of a file for sav-
ing output. The second sequence has been shuffled 1000 times conserving
amino acid composition, and realigned to the first sequence. The distribution of
scores is shown. Fitting the extreme value distribution to these scores provides
an estimate of A and K needed for performing the statistical estimate by Equa-
tion 31. Recent versions of PRSS estimate these parameters by the method of
maximum likelihood estimation (Mott 1992; W. Pearson, pers. comm.)
described on the book Web site.
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The above method does not necessarily ensure that the choice of scoring matrix and gap
penalties provides a realistic set of local alignment scores. In the comparable situation of
matching a test sequence to a database of sequences, the scores also follow the extreme
value distribution. For this situation, Mott (1992) has explained that for local alignments
the end point of the alignment should on the average be half-way along the query
sequence, and for global alignments, the end point should be beyond that half-way point.
Pearson (1996) has pointed out that the presence of known, unrelated sequences in the
upper part of the curve where E > 1 (see Chapter 7) can be an indication of an inappro-
priate scoring system.

The Statistical Significance of Individual Alignment Scores between Sequences and the
Significance of Scores Found in a Database Search Are Calculated Differently

In performing a database search between a query sequence and a sequence database, a
new comparison is made for each sequence in the database. Alignment scores between
unrelated sequences are employed by FASTA to calculate the parameters of the extreme
value distribution. The probability that scores between unrelated sequences could reach
as high as those found for matched sequences can then be calculated (Pearson 1998).
Similarly, in the database similarity search program BLAST, estimates of the statistical
parameters are calculated based on the scoring matrix and sequence composition. The
parameters are then used to calculate the probability of finding conserved patterns by
chance alignment of unrelated sequences (Altschul et al. 1994). When performing such
database searches, many trials are made in order to find the most strongly matching
sequences.

As more and more comparisons between unrelated sequences are made, the chance that
one of the alignment scores will be the highest one yet found increases. The probability of
finding a match therefore has to be higher than the value calculated for a score of one
sequence pair. The length of the query sequence is about the same as it would be in a nor-
mal sequence alignment, but the effective database sequence is very large and represents
many different sequences, each one a different test alignment. Theory shows that the Pois-
son distribution should apply (Karlin and Altschul 1990, 1993; Altschul et al. 1994), as it
did above for estimating the parameters of the extreme value distribution from many
alignments between random sequences.

The probability of observing, in a database of D sequences, no alignments with
scores higher than the mean of the highest possible local alignment scores s is given by
e~ ™, and that of observing at least one score sis P = 1 — e~ %, For the range of values
of P that are of interest, i.e., P < 0.1, P = Ds. If two sequences are aligned by PRSS
as given in the above example, and the significance of the alignment is calculated, two
scores must be considered. The probability of the score may first be calculated using
the estimates of N and K. Thus, in the phage repressor alignment, P(s > 401) =
3.7. X 107?7. However, to estimate the EV parameters, 1000 shuffled sequences
were compared, and the probability that one of those sequences would score as high as
401 is given by Ds, or 1000 X 3.7 X 107%" = 3.7 X 10~ **. These numbers are also
shown in the statistical estimates computed by PRSS. Finally, if the score had arisen
from a database search of 50,000 sequences, the probability of a score of 401 among this
many sequence alignments is 5 X 107 '°, still a small number, but 50,000 larger than
that for a single comparison. These probability calculations are used for reporting the
significance of scores with database sequences by FASTA and BLAST, as described in
Chapter 7.
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SEQUENCE ALIGNMENT AND EVOLUTIONARY DISTANCE ESTIMATION BY BAYESIAN
STATISTICAL METHODS

A recent development in sequence alignment methods is the use of Bayesian statistical
methods to produce alignments between pairs of sequences (Zhu et al. 1998) and to cal-
culate distances between sequences (Agarwal and States 1996). Before discussing these
methods further, we provide some introductory comments about Bayesian probability.

Introduction to Bayesian Statistics

Bayesian statistical methods differ from other types of statistics by the use of conditional
probabilities. These probabilities are used to derive the joint probability of two events or con-
ditions. An example of a conditional probability is P(BOA), meaning the probability of B,
given A, whereas P(B) is the probability of B, regardless of the value of A. Suppose that A can
have two states, A1 and A2, and that B can also have two states, B1 and B2, as shown in Table
3.11. These states might, for instance, correspond to two allelic states of two genes. Then,
P(B) = P(B1) + P(B2) = 1 and P(A) = P(Al) + P(A2) = 1. Suppose, further, that the prob-
ability P(B1) = 0.3 is known. Hence P(B2) = 1 — 0.3 = 0.7. In our genetic example, each
probability might correspond to the frequency of an allele, for which p and g are often used.
These probabilities P(B1), etc., can be placed along the right margins of the table as the
respective sum of each row or column and are referred to as the marginal probabilities.

Interest is now focused on filling in the missing data in the middle two columns of the
table. The probability of A1 and B1 occurring together (the value to be entered in row Bl
and column A1) is called the joint probability, P(B1 and A1) (also denoted P[B1, A1]). The
marginal probability P(A1) is also missing. The available information up to this point,
called the prior information, is not enough to calculate the joint probabilities. With addi-
tional data on the co-occurrence of Al with Bl, etc., these joint probabilities may be
derived by Bayes’ rule. Suppose that the conditional probabilities P(A10B1) = 0.8 and
P(A20B2) = 0.70 are known, the first representing, for example, the proportion of a pop-
ulation with allele B1 that also has allele Al. First, note that P(A10B1) + P(A2CB1) = 1,
and hence that P(A20B1) = 1.0 — 0.8 = 0.2. Similarly, P(A10B2) = 1.0 — 0.70 = 0.3. Then
the joint probabilities and other conditional probabilities may be calculated by Bayes’ rule,
illustrated using the joint probability for A1 and B1 as an example.

P(Al and B1) = P(B1) P(A10B1) (38)
P(Al and B1) = P(A1) P(B1CA1) (39)

Thus, P(A1 and B1) = P(B1) X P(A1CB1) = 0.3 X 0.8 = 0.24, and P(A2 and B2) = P(B2)
X P(A20B2) = 0.7 X 0.7 = 0.49. The other joint probabilities may be calculated by sub-
traction; e.g., P(A2 and B1) = P(B1) — P(Al and B1) = 0.30 — 0.24 = 0.06. To calculate

Table 3.11. Prior information for
a Bayes analysis

Al A2

B1 0.3
B2 0.7
1.0
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Table 3.12. Completed table of
joint and marginal probabilities

Al A2

B1 0.24 0.06 0.3
B2 0.21 0.49 0.7
0.45 0.55 1.0

P(A1) and P(A2), the joint probabilities in each column may be added, thereby complet-
ing the additions to the table, and shown in Table 3.12.
However, note that P(A1) may also be calculated in the following manner,

P(Al) = P(Al and B1) + P(Al and B2)
= P(B1) P(A10B1) + P(B2) P(A10B2) (40)

Other conditional probabilities may be calculated from Equations 38 and 39 by rear-
ranging terms and by substituting Equation 40, and the following form of Bayes’ rule may
be derived,

P(B20A1) = P(A1 and B2) / P(A1)
= P(B2) P(A1CB2) / P(A1)
= P(B2) P(A1CB2) / [P(B1) P(AICB1) + P(B2) P(A1CB2)]  (41)

Using Equation 41, P(B20OA1) = 0.7 X 0.30/[0.3 X 0.80 + 0.7 X 0.3] = 0.467, and also
P(B10OA1) = 1.0 — 0.467 = 0.533. Such calculated probabilities are called posterior proba-
bilities or posteriors, as opposed to the prior probabilities or priors initially available. Thus,
based on the priors and additional information, application of Bayes’ rule allows the cal-
culation of posterior estimates of probabilities not initially available. This procedure of
predicting probability relationships among variables may be repeated as more data are col-
lected, with the existing model providing the prior information and the new data provid-
ing the information to derive a new model. The initial beliefs concerning a parameter of
interest are expressed as a prior distribution of the parameter, the new data provide a like-
lihood for the parameter, and the normalized product of the prior and likelihood (Eq. 41)
forms the posterior distribution.

Example: Bayesian Analysis

Another illustrative example of a Bayesian analysis is the game played by Monty Hall
in the television game show “Let’s Make a Deal.” Behind one of three doors a prize is
placed by the host. A contestant is then asked to choose a door. The host opens one
door (one that he knows the prize is not behind) and reveals that the prize is not
behind that door. The contestant is then given the choice of changing to the other
door of the three to win. The initial or prior probability for each door is 1/3, but after
the new information is provided, these probabilities must be revised. The original
door chosen still has a probability of 1/3, but the second door that the prize could be
behind now has a probability of 2/3. These new estimates are posterior probabilities
based on the new information provided.
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In the above example, note that the joint probability of A1 and B1 [P(Al and B1)] is not
equal to the product of P(A1) and P(B1); i.e., 0.24 is not equal to 0.3 X 0.45 = 0.135. Such
would be the case if the states of A and B were completely independent; i.e., if A and B were
statistically independent variables as, for example, in a genetic case of two unlinked genes
A and B. In the above example, the state of one variable is influencing the state of the other
such that they are not independent of each other, as might be expected for linked genes in
the genetic example.

A more general application of Bayes’ rule is to consider the influence of several variables
on the probability of an outcome. The analysis is essentially the same as that outlined
above. To see how the method works with three instead of two values of a variable, think
first of an example of three genes, each having three alleles, and of deriving the corre-
sponding conditional probabilities. The resulting joint probabilities will depend on the
choice made of the three possible values for each variable. To go even farther, instead of a
small number of discrete sets of alternative values of a variable, Bayesian statistical meth-
ods may also be used with a large number of values of variables or even with continuous
variables.

For sequence analysis by Bayesian methods, a slightly different approach is taken.
The variables may include combinations of possible alignments, gap scoring systems,
and log odds substitution matrices. The most probable alignments may then be identi-
fied. The scoring system used for sequence alignments is quite readily adapted to such
an analysis. In an earlier discussion, it was pointed out that a sequence alignment score
in bits is the logarithm to the base 2 of the likelihood of obtaining the score in align-
ments of related sequences divided by the likelihood of obtaining the score in align-
ments of unrelated sequences. It was also indicated that the highest alignment score
should be obtained if the scoring matrix is used that best represents the nucleotide or
amino acid substitutions expected between sequences at the same level of evolutionary
distance. Bayesian methodology carries this analysis one step farther by examining the
probabilities of all possible alignments of the sequences using all possible variations of
the input parameters and matrices. These selections are the prior information for the
Bayesian statistical analysis and provide various estimates of the alignment that allow
us to decide on the most probable alignments. The alignment score for each combina-
tion of these variables provides an estimate of the probability of the alignment. By using
equations of conditional probability such as Equation 41, posterior information on the
probability of alignments, gap scoring system, and substitution matrix can be obtained.
For further reading, a Bayesian bioinformatics tutorial by C. Lawrence is available at
http://www.wadsworth.org/resnres/bioinfo/.

Application of Bayesian Statistics to Sequence Analysis

To use an example from sequence analysis, a local alignment score (s) between two
sequences varies with the choice of scoring matrix and a gap scoring system. In the
previous sections, an amino acid scoring matrix was chosen on the basis of its per-
formance in identifying related sequences. Gap penalties were then chosen for a partic-
ular scoring matrix on the basis of their performance in identifying known sequence
relationships and of their keeping a local alignment behavior by the increase in score
between unrelated sequences remaining a logarithmic function of sequence length.
The alignment score expressed in bit units was the ratio of the alignment score expect-
ed between related sequences to that expected between unrelated sequences, expressed
as a logarithm to the base 2. The scores may be converted to an odds ratio (r) using
the formula r = 2°% The probability of such a score between unrelated or random
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sequences can then be calculated using the parameters for the extreme value distri-
bution for that combination of scoring matrix and gap penalty. Finally, the above
analysis may provide several different alignments, without providing any information
as to which is the most likely. With the application of Bayesian statistics, the approach
is different.

The application of Bayesian statistics to this problem allows one to examine the effect
of prior information, such as the chosen amino acid substitution matrix, on the prob-
ability that two sequences are homologous. The method provides a posterior probabil-
ity distribution of all alignments taking into account all possible scoring systems. Thus,
the most likely alignments and their probabilities may be determined. This method cir-
cumvents the need to choose a particular scoring matrix and gap scoring system
because a range of available choices can be tested. The approach also provides condi-
tional posterior distributions on the gap number and substitution matrix. Another
application of Bayes statistics for sequence analysis is to find the PAM DNA substitu-
tion matrix that provides the maximum probability of a given level of mismatches
in a sequence alignment, and thus to predict the evolutionary distance between the
sequences.

Bayesian Evolutionary Distance

Agarwal and States (1996) have applied Bayesian methods to provide the best estimate
of the evolutionary distance between two DNA sequences. The examples used are
sequences of the same length that have a certain level of mismatches. Consequently,
there are no gaps in the alignment between the sequences. Sequences of this type origi-
nated from gene duplication events in the yeast and Caenorhabditis elegans genomes.
When there are multiple mismatches between such repeated sequences, it is difficult to
determine the most likely length of the repeats. With the application of Bayesian meth-
ods, the most probable repeat length and evolutionary time since the repeat was formed
may be derived.

The alignment score in bits between sequences of this type may be calculated from the
values for matches and mismatches in the DNA PAM scoring matrices described earlier
(Table 3.6). Recall that a PAM1 evolutionary distance represents a change of 1 sequence
position in 100 and is thought to correspond roughly to an evolutionary distance of 10
years. Higher PAMN tables are calculated by multiplying the PAM1 scoring matrix by itself
n times. This Markovian model of evolution assumes that any sequence position can
change with equal probability, and subsequent changes at a site are not influenced by pre-
ceding changes at that site. In addition, a changed position can revert to the original
nucleotide at that position. The problem is to discover which scoring matrix (PAM50, 100,
etc.) gives the most likely alignment score between the sequences. This corresponding evo-
lutionary distance will then represent the time at which the sequence duplication event
could have occurred.

An approach described earlier was to evaluate the alignment scores using a series of
matrices and then to identify the matrix giving the highest similarity score. For exam-
ple, if there are 60 mismatches between sequences that are 100 nucleotides long, the
PAM50 matrix score of the alignment in bits (log,) is 40 X 1.34 — 60 X 1.04 = —8.8,
but the PAM125 matrix score is much higher, 40 X 0.65 — 60 X 0.30 = 8. When these
log odds scores in bits are converted to odds scores, the difference is 0.002 versus 256.
Thus, the PAM 125 matrix provides a much better estimate of the evolutionary distance
between sequences that have diverged to this degree. The Bayesian approach continues
this type of analysis to discover the probability of the alignment as a function of each
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evolutionary distance represented by a different PAM matrix. If x is the evolutionary
distance represented by the PAMN matrix divided by 100, and k is the number of mis-
matches in a sequence of length #, then by Bayes’ rule and related formulas discussed
above

P(xCk) = P(kx) P(x) / P(k)
= P(kix) P(x) / %, P(k[x) (42)

P(xCk) is the probability of distance x given the sequence with k mismatches (and n — k
matches), P(k(x) is the odds score for the sequence with k mismatches using the log odds
scores in the DNA PAM100x matrix, and P(x) is the prior probability of distance x (usu-
ally 1 over the number of matrices, thus making each one equally possible). The denom-
inator is the sum of the odds scores over the range of x, which is 0.01 — 4, representing
PAMI to PAM400 (~10 million to 4 billion years) times the prior probability of each
value of x. Like the conditional probabilities calculated by Equation 42, this sum repre-
sents the area under the probability curve and has the effect of normalizing the probabil-
ity for each individual scoring matrix used. The shape of the probability curve reveals how
P(xCk) varies with x. An example is shown in Figure 3.19.

The probability curves have a single mode or highest score for k < 3n/4. Because the
curves are not symmetrical about this mode but are skewed toward higher distances, the
expected value or mean of the distribution and its standard deviation are the best indica-
tion of evolutionary distance. For a sequence 100 nucleotides long with 40 mismatches, the
expected value of x is 0.60 with s = 0.11, representing a distance of ~600 million years.
These estimates are different from the earlier method that was described of finding the
matrix that gives the highest alignment score, which would correspond to the mode or
highest scoring distance. Other methods of calculating evolutionary distances are
described in Chapter 6.
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Figure 3.19. P(xk) for sequence length n = 100 and number of mismatches k = 40 or 60. (Redrawn
from Agarwal and States 1996.)
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Working with Odds Scores

Odds scores, and probabilities in general, may be either multiplied or added, depend-
ing on the type of analysis. If the purpose is to calculate the probability of one event
AND a second event, the odds scores for the events are multiplied. An example is the
calculation of the odds of an alignment of two sequences from the alignment scores
for each of the matched pairs of bases or amino acids in the alignment. The odds
scores for the pairs are multiplied. Usually, the log odds score for the first pair is
added to that for the second, etc., until the scores for every pair have been added. An
odds score of the alignment in units of logarithm to the base 2 (bits) may then be cal-
culated by the formula odds score = 2 raised to the power of the log odds score. A
second type of probability analysis is to calculate the odds score for one event OR a
second event, or of a series of events (event 1 OR event 2 OR event 3). In this case,
the odds scores are added. An example is the calculation of the odds score for a given
sequence alignment using a series of alternative PAM scoring matrices. The align-
ment scores are calculated in log odds units and then converted into odds scores as
described above. The odds scores for the sequences using matrix 1 are added to the
odds score using matrix 2, then to the score using matrix 3, and so on, thereby gen-
erating the odds score for the set of matrices. From this sum of odds scores, the prob-
ability of obtaining one of the odds scores S is S divided by the sum. There are also a
number of other uses of this same type of calculation for locating common patterns
in a set of sequences by statistical methods that are discussed in Chapter 4.

One difficulty with making such estimations is that the estimate depends on the
assumption that the mutation rate in sequences has been constant with time (the molecu-
lar clock hypothesis) and that the rate of mutation of all nucleotides is the same. Such
problems may be solved by scoring different portions of a sequence with a different scor-
ing matrix, and then using the above Bayesian methods to calculate the best evolutionary
distance. Another difficulty is deciding on the length of sequence that was duplicated. In
genomes, the presence of repeats may be revealed by long regions of matched sequence
positions dispersed among regions of sequence positions that do not match. However, as
the frequency of mismatches is increased, it becomes difficult to determine the extent of
the repeated region. The application of the above Bayesian analysis allows a determination
of the probability distributions as a function of both length of the repeated region and evo-
lutionary distance. A length and distance that gives the highest overall probability may then
be determined. Such alignments are initially found using an alignment algorithm and a
particular scoring matrix. Analysis of the yeast and C. elegans genomes for such repeats has
underscored the importance of using a range of DNA scoring matrices such as PAM1 to
PAM120 if most repeats are to be found (Agarwal and States 1996). One disadvantage of
the Bayesian approach is that a specific mutational model is required, whereas other meth-
ods, such as the maximum likelihood approach described in Chapter 6, can be used to esti-
mate the best mutational model as well as the distance. Computationally, however, the
Bayesian method is much more practical.

Bayesian Sequence Alignment Algorithms

Zhu et al. (1998) have devised a computer program called the Bayes block aligner which in
effect slides two sequences along each other to find the highest scoring ungapped regions
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or blocks. These blocks are then joined in various combinations to produce alignments.
There is no need for gap penalties because only the aligned sequence positions in blocks are
scored. Instead of using a given substitution matrix and gap scoring system to find the
highest scoring alignment, a Bayesian statistical approach is used. Given a range of substi-
tution matrices and number of blocks expected in an alignment as the prior information,
the method provides posterior probability distributions of alignments. The Bayes aligner is
available through a licensing agreement from http://www.wadsworth.org/resnres/bioinfo.
A graphical interface for X windows in a UNIX environment and a nongraphical interface
for PCs running Windows are available. The method may be used for both protein and
DNA sequences. An alignment block between two sequences is defined as a run of one or
more identical characters in the sequence alignment that can include intervening mis-
matches but no gaps, as shown in the following example. Only the aligned blocks are iden-
tified and scored; regions of unaligned sequence and gaps between these blocks are not
scored. The probability of a given alignment is given by the product of the probabilities of
the individual alignment scores in the blocks, as indicated in the following example. The
Bayes block aligner scores every possible combination of blocks to find the best scoring
alignment.

Example: Block Alignment of Two Sequences and of the Scoring of the Alignment as
Used in the Bayes Block Aligner (Zhu et al. 1998)

The score of the alignment is obtained by adding the log odds scores of each aligned
pair in each block. Sequence not within these blocks is not scored and there is no
penalty for gaps. Regions of both sequences that are not aligned can be present with-
in the gap. The sequence alignment score is therefore determined entirely by the
placement of block boundaries.

Block 1 Block 2
Sequence 1 S G T G K (gap) K K R L E
Sequence 2 P G S G K(gap) K Q¢ R L T
BLOSUM62
score -16 1 6 5 5 1 5 4 =1
Sum of scores = 31 half bits
= 15.5 bits

Odds of alignment score

= 215.5¢0 1

= 4.6 x 104to 1
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Unlike the commonly used methods for aligning a pair of sequences, the Bayesian
method does not depend on using a particular scoring matrix or designated gap
penalties. Hence, there is no need to choose a particular scoring system or gap penal-
ty. Instead, a number of different scoring matrices and range of block numbers up to
some reasonable maximum are examined, and the most probable alignments are
determined. The Bayesian method provides a distribution of alignments weighted
according to probability and can also provide an estimate of the evolutionary dis-
tance between the sequences that is independent of scoring matrix and gaps.

Like dynamic programming methods and the BLAST and FASTA programs, the
Bayes block aligner has been used to find similar sequences in a database search. The
most extensive comparisons of database searches have shown that the program
SSEARCH based on the Smith-Waterman algorithm, with the BLOSUMS50 -12,-2
matrix and gap penalty scoring system, can find the most members of protein fami-
lies previously identified on the basis of sequence similarity (Pearson 1995, 1996,
1998) or structural homology (Brenner et al. 1998). In a similar comprehensive anal-
ysis, Zhu et al. have shown that the Bayes block aligner has a slightly better rate than
even SSEARCH of finding structurally related sequences at a 1% false-positive level.
Hence, this method may be the best one to date for database similarity searching.

The Bayes block aligner defines blocks by an algorithm due to Sankoff (1972). This
algorithm is designed to locate blocks by finding the best alignment between two
sequences for any reasonable number of blocks. The example shown in Figure 3.20
illustrates the basic block-finding algorithm.

Following the initial finding of block alignments in protein sequences by the
Sankoff method, the Bayes block aligner calculates likelihood scores for these align-
ments for various block numbers and amino acid or DNA substitution matrices. To
be biologically more meaningful by avoiding too many blocks, the number of protein
sequence blocks k is limited from zero to 20 or the length of the shorter sequence
divided by 10, whichever is smaller. For a set of amino acid substitution matrices such
as the Dayhoff PAM or BLOSUM matrices, the only requirement is that they should
be in the log odds format in order to provide the appropriate likelihood scores by
additions of rows and columns in the V .and W matrices (Fig. 3.20). A large number of
matrices like the V and W matrices in Figure 3.20 are used, each for a different amino
acid substitution matrix and block number. In each of these matrices, a number of
alignments of the block regions that are found are possible. The score in the lower
right-hand corner of each matrix is the sum of the odds scores of all possible align-
ments in that particular matrix. The odds scores thus calculated in each matrix are
summed to produce a grand total of odds scores. The fraction of this total that is
shared by a set of alignments under given conditions (e.g., a given number of blocks
or an amino acid substitution matrix) provides the information needed to calculate
the most probable scoring matrix, block number, etc., by Bayesian formulas. The joint
probabilities equivalent to the interior row and column entries in Tables 3.11 and 3.12
are then calculated. In this case, each joint probability is the likelihood of the align-
ment given a particular block alignment, number of blocks, and substitution matrix,
multiplied by the prior probabilities. These prior probabilities of particular alignment,
block number, and scoring matrix are treated as having an equally likely prior proba-
bility. Once all joint probabilities have been computed for every combination of the
alignment variables, the conditional posterior information can be obtained by Bayes’
rule, using equations similar to Equation 41. As in Equation 41, the procedure involves
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dividing the sum of all alignment likelihoods that apply to a particular value of a partic-
ular variable by the sum of all alignment likelihoods found for all variables.

Use of the Bayes Block Aligner for Pair-wise Sequence Alignment

There are several possible uses of the Bayes block aligner for sequence alignment. The
overall probability that a given pair of residues should be aligned may be found by sev-
eral methods. In the first, alignments may be sampled in proportion to their joint pos-
terior probability, as for example, alignments produced by a particular combination of
substitution matrix and gap number. A particular substitution matrix and gap number
may be chosen based on their posterior probabilities. An alignment may then be
obtained from the alignment matrix in much the same manner as the trace-back proce-
dure used to find an alignment by dynamic programming. Once a number of sample
alignments has been obtained, these samples may be used to estimate the marginal dis-
tribution of all alignments. This distribution then gives the probability that each pair of
residues will align. An alternative method of sampling the joint posterior probability
distribution is to identify an average alignment for k blocks by sampling the highest
peaks in the marginal posterior alignment distribution and by using each successively
lower peak as the basis for another alignment block down to a total of k blocks, con-
catenating any overlaps. These alignments may then be used to obtain the probability of
each aligned residue. In the second method, the exact marginal posterior alignment dis-
tribution of a specific pair of residues may be obtained by summing over all substitution
matrices and possible blocks.

Third, optimal alignment and near-optimal alignments for a given number of blocks
can also be obtained. Finally, the Bayes block aligner provides an indication as to
whether or not the sequence similarity found is significant. Bayesian statistics examines
the posterior probabilities of all alternative models over all possible priors. The Bayesian
evidence that two sequences are related is given by the probability that K, the maximum
allowed number of blocks, is greater than 0, as calculated in the following example taken
from Zhu et al. (1998). The posterior probability of the number of blocks, the substitu-
tion matrices, and the aligned residues can all be calculated as described above.

Example: Bayes Block Aligner (Zhu et al. 1998)

The proteins guanylate kinase from yeast (PDB id. 1GKY) and adenylate kinase from
beef heart (PDB id. 2AK3, chain A) are known to be structurally related and are from a
database of protein sequences that are 26-35% identical. These proteins were aligned
with the Bayes block aligner using as prior information an equal chance that the block
number k can be any number between 0 and 18, and that the BLOSUM30 to 100 sub-
stitution matrices can each equally well predict the aligned positions. The posterior
probability distribution of the number of blocks, k, is shown in Figure 3.21A. Values k
> 0 indicate the possibility of finding one or more blocks. In this example, the proba-
bility for values of k is approximately the same for k > 8. Below 8, the values decrease
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gradually to a low value at k = 1 and then increase again abruptly for k = 0. The total
area under the curve from k = 0 to k = 18 has been set to 1.

The cumulative posterior probability that the block number K is greater than a
given value k is shown in Figure 3.21B. The area under the curve for k = 1 has the
value 0.938. Although at first glance this number appears to represent the probabili-
ty that the sequences are related, i.e., that K > 0, the probability is actually higher by
Bayesian standards. Instead, the maximum value for P(kOsequences) in Figure 3.21A,
i.e., 0.0731 at k = 8, is used. This number times the maximum number of blocks
0.0731 X 18 = 1.316, represents the accumulated best evidence that the blocks are
related or that K > 0. This calculation assumes that all block numbers are equally
likely or that p(kCk>0) = 1/K = 1/18. The value P(k = 0Osequences) = 0.0621 is the
corresponding best evidence that the sequences are not related or that K = 0. The
probability that the sequences are related is then calculated as 1.316 / (1.316 +
0.0621) = 0.955. This value is the supremum of P(k > 0) taken over all prior distri-
butions on k, where the supremum is a mathematical term that refers to the least
upper bound of a set of numbers. This high a Bayesian probability is strong evidence
for the hypothesis that the sequences are homologous. Normally, a Bayesian proba-
bility of p > 0.5 will suffice (Zhu et al. 1998).

The posterior probability distribution for the BLOSUM scoring matrices for align-
ment of these same two proteins is shown in Table 3.13. Note that the highest prob-
abilities are for BLOSUM tables between BLOSUMS50 and BLOSUM 80, and that the
highest probability is at BLOSUM62, which is commonly used for protein sequence
alignment and database searches. Thus, BLOSUMS62 seems best to represent the
amino acid substitutions observed in all of the computed alignments between these
two proteins. In another alignment of 1GKY and 2AK3-A using the Dayhoff PAM
matrices instead of the BLOSUM matrices, the posterior probability distribution of
the matrices shown in Figure 3.22 was found. Note that peaks are found at PAM110,

-
v

Figure 3.20. The Sankoff algorithm for finding the maximum number of identical residues in two
sequences without scoring gaps. The example of two DNA sequences shown is taken from Sankoff
(1972). A series of scoring matrices called V and W are made according to the matrix scoring scheme
shown in parts A—D. In A, the algorithm first examines the maximum number of bases that can
match. The scoring scheme used in this example is that a match between two bases is scored as 1 and
a mismatch as 0. This number, 4, is shown in the lower right-hand corner of the matrix. To obtain
this number, the method does not consider the number of gapped regions between each group of
matched pairs, defined as an unconstrained set of matches by Sankoff. For example, a; can pair with
b;, and a, with by, to comprise a group of two sequential pairs, shown in bold. Then there is an
unmatched region followed by a match of a, with bs, unmatched base as, and finally a match
between ag and b;. Thus, two unmatched (gapped) regions will be included in this alignment. A sec-
ond such set of matches that gives a maximum number of matches is shown as italicized positions.
In this case, there is one unmatched region between the groups of matches. In B-D, a slightly dif-
ferent computational method is used to find the maximum possible number of matches given that
there are zero gapped regions, one gapped region, two gapped regions, etc. In B, a matrix V;, where
subscript 0 indicates the number of gapped regions permitted, is first calculated. The bold and ital-
icized positions indicate the scores found for the two groups of matches. To simplify the calculation
of higher-level V matrices (V}, V5, etc.), another set of matrices (W;, W, etc.) is also calculated. In
C, the calculation of W, is shown. Using the scores calculated in W;, matrix position and the algo-
rithm shown in D, V] is then produced. V; shows the same combinations of matches found in the
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A. W matrix B. V matrix
j b C C A G T C T j b C C A G T C T
i 0 1 2 3 4 5 6 7 i 0 1 2 3 4 5 6 7
a0l0oO|jO0O|JO|jO]jO]|]O|O]O a0l|0O|0O0|O]|O|O|]O]|]O]O
A1lOo|O0O]|O|1|1]|1]|1]A1 A1l0|0|O0O|1]0]|0]|0]|O
G2|l|0|0|O0|0|2|2]|2]|2 G2|l|0|0|0|0O|2]0|0]O0
c3|o|717|1|1]|]2|2]|]3]|3 c3|0|7|1|]0|0|2|1]0
c4|0|0|2|2|2|2|3]|3 c4)]0|1]2|1|]0|1]|3]|3
A5(0|1|2|3[3|83|3]|3 A5(0|1|1|3|1|]0|0]|3
T6|0| 0| 1]|2|3|4|4]| 4 T6]0|0|0|1|3|2|0]1
W) Volif) =
Wi - 1), Voli = 1,j=1) + s(a;, b)
=max < W(,j-1),
WGi-1,j-1) +s(a; b)
where s(a;, b)) is score of match of &; with b;.
C. Wy matrix D. V; matrix
i b C C A G T C T j b C C A G T C T
i 0O 1 2 3 4 5 6 7 i 0O 1 2 3 4 5 6 7
a0l0|0|O0O|O|O]O]|]O]|O a0l|0O|O0O|O]|]O|O]O]|]O]O
A1lo|O]|O|1|1]|1]|1]A1 A1l0o|0|O|1]0]|0]|0]|O
G2|l|0j0|O0|1]|2]|2|2]|2 G2l0|O0|O0O|O|2|1]1]1
c3jo|1|1|1|2|2]2]|2 c3|0|7|1|0|1|2]|3]|2
c4l0|1|2|2|2]|]2|3]|3 c4)]0|1]2|1]|1]2]|3]|3
A5(0|1|2|3|3|3|3]|3 A5|0|0|1|3|2|2|2]|3
Te|O0|1|2|3|3|]3|3]|3 T6]0|0|1|2|3|4|3]| 4
Wo(i.)) )]
Woli -1, j), Vii-1,j-1),
= max
=max < Volif). Wo@i-1,j-1)
Wofisj = 1) +s(a b)
where Vi, j) is from the V; matrix in part B. where W(i, j) are obtained from the W,

matrix in part C.

unconstrained case in A, and, therefore, no further calculation of matrices is necessary. In other cases,
q V and W matrices will be calculated so that alignments with an increased number of unmatched or
gapped regions may be found according to the formulas:

Wq (l - 1)j)>
W,(, j) = max |V, (j),
Wq (L] - 1)

Vo(i—1,j—1),
V, (5 j) = max W, 1(i—1,;—-1)
+ s(a;, b))

The number of computational steps required is equal to the product of the sequence lengths times the
number of cycles needed to reach the unconstrained alignment, as shown in the lower right-hand cor-
ner of the matrix (A). The method may also be used for aligning protein sequences (Zhu et al. 1998)
that are distantly related, as described below.
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Table 3.13. Posterior probability distribu-
tion of BLOSUM scoring matrices for align-
ment of 1GKY and 2AK3-A

Matrix Posterior probability
BLOSUM30 0.0257
BLOSUM35 0.0449
BLOSUM40 0.0825
BLOSUMA45 0.1115
BLOSUMS50 0.1755
BLOSUMS62 0.2867
BLOSUMS80 0.2350
BLOSUM100 0.0382
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Figure 3.21. Posterior probability distribution of number of blocks from alignment of 1GKY and 2AK3-chain A by the Bayes
block aligner (analysis of Zhu et al. 1998). (A) Posterior probability distribution of the block number, k. (B) Cumulative posteri-
or probability distribution. This distribution shows the probability of a block number K greater than or equal to the value k. Val-
ues are derived from the probability distribution of k given in A. For example, P(k=1) = P(k=0) — P(k=0) = 1 — 0.062 = 0.938.
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Figure 3.22. Posterior probability distribution of Dayhoff PAM scoring matrices for alignment of
1GKY and 2AK3-A.

140, and 200, thereby suggesting that substitution matrices for different evolutionary
distances reflect the observed substitutions in different block alignments. The lower
PAM matrix may be recognizing a more conserved domain, for example. This inter-
esting observation implies that the alignment blocks found may be separated by dif-
ferent evolutionary distances, or at least may have undergone increased mutational
variation. Thus, this type of analysis can provide information as to the evolutionary
history of genes, including the possible involvement of duplications, rearrangements,
and genetic events producing chimeras.

Another type of analysis that can be performed with the Bayes block aligner is to exam-
ine the probability of the alignments. The procedure is entirely different from other meth-
ods of sequence alignment such as dynamic programming. On the one hand, with dynam-
ic programming methodology, a single best alignment is found for a given scoring matrix
and gap penalty, and the odds for finding as good a score between random sequences of
the same length and complexity is determined. On the other hand, with Bayesian align-
ment methods, all possible alignments are considered for a reasonable number of blocks
and a set of substitution matrices. Rather than a probability of a single alignment, the prob-
abilities of many alignments are provided. Many possible alignments may be examined and
compared, and the frequency of certain residues in the sequences in these alignments may
be determined.

For 1GKY and 2AK3-A, no highly probable single optimal or near-optimal alignment is
found, suggesting these alignments are not representative of the best possible alignment of
these sequences. Experience with the method has suggested that a minimum number of
blocks that best represents the expected domain structure is the best approach. An average
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A. Bayes block aligner
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Figure 3.23. The alignment of 1GKY and 2AK3-A obtained with the Bayes aligner (A) and by
SSEARCH (B), a dynamic programming method that provides local alignments (from Zhu et al.
1998). The highest-scoring sequence positions in the marginal posterior alignment distribution for
the sequences for a block number of probability greater than 0.9 and the BLOSUM substitution
matrices were successively sampled, and are shown in A. Neighboring aligned positions with scores
greater than 0.25 of the peak value were included. Dots above the sequences indicate the relative
probability of the aligned sequence positions. Asterisks are placed to highlight sequence identities.
There is a clear correlation between the number of identities and the posterior probabilities. Align-
ment positions marked with an s’ were also identified by structural alignment using the program
VAST (see Chapter 9). In regions III and IV, longer aligned regions were found by VAST than by the
Bayes aligner. Three other regions identified by VAST of lengths 7, 7, and 8, two of which include
1-2 identities, were not reported by the Bayes aligner. In B, a local alignment of the sequences with
SSEARCH is shown. The alignment parameters (BLOSUMS50 substitution table and scoring penal-
ties of —12,—2) are optimized for superfamily and family alignments. The center and right end of
the alignment shown are approximately the same as that of alignment IV, but gaps are incorrectly
predicted in the left end.
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alignment for a number of blocks of probability greater than 0.9 has been found to give
good agreement with predicted structural alignments. Values of k are obtained from the
probability distribution for k such as in Figure 3.21. Using this approach with the Bayes
aligner, the alignments between 1GKY and 2AK3-A shown in Figure 3.23 have been pre-
dicted. Although most of the predicted alignments correspond to expected structural
alignments with the active site of the enzyme, alignment II does not so correspond (Fig.
3.24). Such false-negative predictions of structural alignments are the commonest error of
Bayesian methods, probably because of relaxed conditions for scoring alignments in the

Figure 3.24. The positions of the alignments predicted by the Bayes block aligner. Predicted alignment I is shown in red, II
in cyan, III in orange, and IV in green. (A) 1GKY, (B) 2AK3-A, and (C) 2AKY, which is similar to 2AK3-A. 2AKY is cocrys-
tallized with an ATP analog. I, III, and IV may be structurally superimposed, but not II. (Reprinted, with permission, from
Zhu et al. 1998 [copyright Oxford University Press].)




134

CHAPTER 3

use of unconstrained prior information (Zhu et al. 1998). For these proteins, which share
little sequence identity, the Bayes aligner correctly predicts many, but not all, features of
the structural alignment, and does so better than a dynamic programming method that
provides local alignments. In other cases, the Bayes aligner may not perform as well as
dynamic programming. The prudent choice is to use the Bayes aligner as one of several
computer tools for aligning sequences.
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CHAPTER 4

INTRODUCTION

O NE OF THE MOST IMPORTANT CONTRIBUTIONS of molecular biology to evolutionary anal-
ysis is the discovery that the DNA sequences of different organisms are often related. Sim-
ilar genes are conserved across widely divergent species, often performing a similar or even
identical function, and at other times, mutating or rearranging to perform an altered func-
tion through the forces of natural selection. Thus, many genes are represented in highly
conserved forms in organisms. Through simultaneous alignment of the sequences of these
genes, sequence patterns that have been subject to alteration may be analyzed.

Because the potential for learning about the structure and function of molecules by
multiple sequence alignment (msa) is so great, computational methods have received a
great deal of attention. In msa, sequences are aligned optimally by bringing the greatest
number of similar characters into register in the same column of the alignment, just as
described in Chapter 3 for the alignment of two sequences. Computationally, msa presents
several difficult challenges. First, finding an optimal alignment of more than two sequences
that includes matches, mismatches, and gaps, and that takes into account the degree of
variation in all of the sequences at the same time poses a very difficult challenge. The
dynamic programming algorithm used for optimal alignment of pairs of sequences can be
extended to three sequences, but for more than three sequences, only a small number of
relatively short sequences may be analyzed. Thus, approximate methods are used, includ-
ing (1) a progressive global alignment of the sequences starting with an alignment of the
most alike sequences and then building an alignment by adding more sequences, (2) iter-
ative methods that make an initial alignment of groups of sequences and then revise the
alignment to achieve a more reasonable result, (3) alignments based on locally conserved
patterns found in the same order in the sequences, and (4) use of statistical methods and
probabilistic models of the sequences. A second computational challenge is identifying a
reasonable method of obtaining a cumulative score for the substitutions in the column of
an msa. Finally, the placement and scoring of gaps in the various sequences of an msa pre-
sents an additional challenge.

The msa of a set of sequences may also be viewed as an evolutionary history of the
sequences. If the sequences in the msa align very well, they are likely to be recently derived
from a common ancestor sequence. Conversely, a group of poorly aligned sequences share
a more complex and distant evolutionary relationship. The task of aligning a set of
sequences, some more closely and others less closely related, is identical to that of discov-
ering the evolutionary relationships among the sequences.

As with aligning a pair of sequences, the difficulty in aligning a group of sequences varies
considerably with sequence similarity. On the one hand, if the amount of sequence varia-
tion is minimal, it is quite straightforward to align the sequences, even without the assis-
tance of a computer program. On the other hand, if the amount of sequence variation is
great, it may be very difficult to find an optimal alignment of the sequences because so
many combinations of substitutions, insertions, and deletions, each predicting a different
alignment, are possible.

The availability of a subset of the many multiple sequence alignment programs is shown
in Table 4.1. A flowchart illustrating the considerations to be made in choosing an align-
ment method is shown on page 144.

When dealing with a sequence of unknown function, the presence of similar domains in
several similar sequences implies a similar biochemical function or structural fold that may
become the basis of further experimental investigation. A group of similar sequences may
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Web sites and program sources for multiple sequence alignment
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Name

Source

Reference

Global alignments including progressive

CLUSTALW or CLUSTALX (latter has
graphical interface)
MSA

PRALINE

Iterative and other methods
DIALIGN segment alignment
MultAlin

PRRP progressive global alignment
(randomly or doubly nested)
SAGA genetic algorithm

Local alignments of proteins

Aligned Segment Statistical Evaluation
Tool (Asset)

BLOCKS Web site

eMOTIF Web server

GIBBS, the Gibbs sampler statistical
method

HMMER hidden Markov model software

MACAW, a workbench for multiple
alignment construction and analysis

MEME Web site, expectation
maximization method

Profile analysis at UCSD**
SAM hidden Markov model Web site

FTP to ftp.ebi.ac.uk/pub/software™?

http://www.psc.edu/®

http://www.ibc.wustl.edu/ibc/msa.html®

FTP to fastlink.nih.gov/pub/msa

http://mathbio.nimr.mrc.ac.uk/~jhering/
praline

http://www.gsf.de/biodv/dialign.html

http://protein.toulouse.inra.fr/multalin.
html

ftp.genome.ad.jp/pub/genome/saitama-
cc

http://igs-server.cnrs-mrs.fr/~
cnotred/Projects_home_page/saga_
home_page.html

FTP to ncbi.nlm.nih.gov/pub/neuwald/
asset

http://blocks.thcrc.org/blocks/

http://dna.Stanford. EDU/emotif/

FTP to ncbi.nlm.nih.gov/pub/neuwald/
gibbs9_95/

http://hmmer.wustl.edu/

FTP to ncbi.nlm.nih.gov/pub/macaw

http://meme.sdsc.edu/meme/website/
http://www.sdsc.edu/projects/profile/

http://www.cse.ucsc.edu/research/comp
bio/sam.html

Thompson et al. (1994a, 1997); Higgins
et al. (1996)

Lipman et al. (1989);
Gupta et al. (1995)

Heringa (1999)

Morgenstern et al. (1996)
Corpet (1988)

Gotoh (1996)

Notredame and Higgins (1996)

Neuwald and Green (1994)

Henikoff and Henikoff (1991, 1992)

Nevill-Manning et al. (1998)

Lawrence et al. (1993); Liu et al. (1995);
Neuwald et al. (1995)

Eddy (1998)

Schuler et al. (1991)

Bailey and Elkan (1995);
Grundy et al. (1996, 1997); Bailey
and Gribskov (1998)

Gribskov and Veretnik (1996)

Krogh et al. (1994); Hughey and Krogh
(1996)

* Lists of additional Web sites for msa are maintained at: http://www.ebi.ac.uk/biocat/, http://www.hgmp.mrc.ac.uk/Regis-

tered/Menu/prot-mult.html, http://www.hum-molgen.de/BioLinks/Biocomp.html, http://biocenter.helsinki.fi/bi/rnd/biocomp/.
Reviews on the performance of msa software are given in McClure et al. (1994; progressive alignment methods), Gotoh (1996) and
Thompson et al. (1999), a review of Web sites is given in Briffeuil et al. (1998) and a review on iterative algorithms is given in Hiro-
sawa et al. (1995) and Gotoh (1999). The performance of msa programs is commonly assessed by comparing the computed msa with
a structural alignment of the proteins and by other objective methods (Notredame et al. 1998). Many of these programs are computa-
tionally complex and must be set up on a local site.

> The Biomedical Supercomputing facility at the University of Pittsburgh Supercomputing Facility provides accounts (see
http://www.psc.edu/biomed/seqanal/grants.html) that provide access to several different versions of MSA and profile analysis. MSA 50
150 will align no more than 50 sequences each less than 150 residues long, MSA 25 500 will align no more than 25 sequences each less
than 200 residues long, and MSA10 1000 will align no more than 10 sequences each less than 1000 long.

¢ The MSA server at the University of Washington will take up to 8 sequences, each less than 500 long.

4 CLUSTALW is also available as freeware that runs on PCs and Macintosh computers from the same FTP site.

¢ Profile generating programs are available by FTP from ftp.sdsc.edu/pub/sdsc/biology and are included in the Genetics Computer
Group suite of programs (http://www.gcg.com/), although the most recent features of Gribskov and Veretnik (1996) are not included.

define a protein family that may share a common biochemical function or evolutionary
origin. Similar proteins have been organized into databases of protein families that are
described in Chapter 9.



142

CHAPTER 4

GENOME SEQUENCING

One application of multiple sequence alignment algorithms is in genome sequencing pro-
jects discussed in Chapter 2. Instead of cloning and arranging a very large number of frag-
ments of a large DNA molecule, and then moving along the molecule and sequencing the
fragments in order, random fragments of the large molecule are sequenced, and those that
overlap are found by a msa program. This approach enables automated assembly of large
sequences. Bacterial genomes have been quite readily sequenced by this method, and it has
also been used to assemble portions of the Drosophila and human genomes at Celera
Genomics (Weber and Myers 1997 and see Chapter 10).

The requirements for a msa program for genome projects differ in several respects from
those for general sequence analysis. First, the sequences are fragments of the same large
sequence molecule, and the sequences of overlapping fragments should be the same except
for sequence copying and reading errors, which may introduce the equivalent of substitu-
tions and insertions/deletions between the compared fragments. Thus, there should be one
correct alignment that corresponds to that of the genome sequence instead of a range of
possibilities. Second, the sequences may be from one DNA strand or the other and hence
the complements of each sequence must also be compared. Third, sequence fragments will
usually overlap, but by an unknown amount, and, in some cases, one sequence may be
included within another. Finally, all of the overlapping pairs of sequence fragments must
be assembled into a large, composite genome sequence, taking into account any redundant
or inconsistent information. Interested readers may wish to consult a description of the
type of methodology (Myers 1995 and see Chapter 10) and a comparison of the methods,
including several commercial packages that are useful for managing the sequence data
from laboratory sequencing projects (Miller and Powell 1994). The Institutue of Genome
Research (http://www.tigr.org/) has also developed and made available software and meth-
ods for genome assembly and analysis.

USES OF MULTIPLE SEQUENCE ALIGNMENTS

Just as the alignment of a pair of nucleic acid or protein sequences can reveal whether or
not there is an evolutionary relationship between the sequences, so can the alignment of
three or more sequences reveal relationships among multiple sequences. Multiple sequence
alignment of a set of sequences can provide information as to the most alike regions in the
set. In proteins, such regions may represent conserved functional or structural domains.

If the structure of one or more members of the alignment is known, it may be possible
to predict which amino acids occupy the same spatial relationship in other proteins in the
alignment. In nucleic acids, such alignments also reveal structural and functional relation-
ships. For example, aligned promoters of a set of similarly regulated genes may reveal con-
sensus binding sites for regulatory proteins. Methods for finding such sites in nucleic acid
sequences are discussed in Chapter 8.

Another use for consensus information retrieved from a multiple sequence alignment is
for the prediction of specific probes for other members of the same group or family of sim-
ilar sequences in the same or other organisms. There are both computer and molecular
biology applications. Once a consensus pattern has been found, database searching pro-
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grams (Chapter 7) may be used to find other sequences with a similar pattern. In the lab-
oratory, a reasonable consensus of such patterns may be used to design polymerase chain
reaction (PCR) primers for amplification of related sequences.

RELATIONSHIP OF MULTIPLE SEQUENCE ALIGNMENT TO PHYLOGENETIC ANALYSIS

Once the msa has been found, the number or types of changes in the aligned sequence
residues may be used for a phylogenetic analysis. The alignment provides a prediction as
to which sequence characters correspond. Each column in the alignment predicts the
mutations that occurred at one site during the evolution of the sequence family, as illus-
trated in Figure 4.1. Within the column are original characters that were present early, as
well as other derived characters that appeared later in evolutionary time. In some cases, the
position is so important for function that mutational changes are not observed. It is these
conserved positions that are useful for producing an alignment. In other cases, the position
is less important, and substitutions are observed. Deletions and insertions may also be
present in some regions of the alignment. Thus, starting with the alignment, one can hope
to dissect the order of appearance of the sequences during evolution.

segA N o F S
seqB N o F - S
seqC N K Y S
seqD N o Y S
NYLS NKYLS N FS NFLS
+K -
YtoF

Figure 4.1. The close relationship between msa and evolutionary tree construction. Shown is a short
section of one msa of four protein sequences including conserved and substituted positions, an
insertion (of K) and a deletion (of L). Below is a hypothetical evolutionary tree that could have gen-
erated these sequence changes. Each outer “branch” in the tree represents one of the sequences. The
outer branches are also referred to as “leaves.” The deepest, oldest branch is that of sequence D, fol-
lowed by A, then by B and C. The optimal alignment of several sequences can thereby be thought of
as minimizing the number of mutational steps in an evolutionary tree for which the sequences are
the outer branches or leaves. The mathematical solution to this problem was first outlined by
Sankoff (1975). Fast multiple sequence alignment programs that are tree-based have since been
developed (Ravi and Kececioglu 1998). However, such an approach depends on knowing the evolu-
tionary tree to perform an alignment, and often this is not the case. Usually, pair-wise alignments
are generated first and then used to predict the tree. In this example, the alignment could be
explained by several different trees, including the one shown, following one of several types of anal-
yses described in Chapter 6. The sequences then become the outer leaves of the tree, and the inner
branches are constructed by this analysis.
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in Chapter 5.

1. The sequence chosen for analysis may already be known to be similar on the basis of pair-wise align-
ments (Chapter 2), but sequences related by other criteria may also be used. Complex features of the
sequences, including repeated or low-complexity regions that interfere with alignments, can be ana-
lyzed as described in Chapters 2 and 7. The flowchart describes the production of four classes of mul-
tiple sequence alignment.

a. A global alignment includes the entire range of each sequence in the alignment, and is usually pro-
duced by extensions to the dynamic programming global alignment algorithm that is used for

aligning pairs of sequences, but other methods are also used.

b. A sequence block is an alignment of common patterns in protein sequences that includes matches
and mismatches in each column found by using pattern-finding algorithms, but no gaps (inser-
tions and deletions) are present.

¢. An alignment of common patterns in protein sequences that includes matches, mismatches, inser-
tions, and deletions may be used to make a type of scoring matrix called a profile.

d. A hidden Markov model is a probabilistic model of a global alignment of protein sequences or of
a conserved local region (similar to a sequence profile) in those sequences that includes matches,
mismatches, insertions, and deletions. The model is “trained” to represent the set of sequences.
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Methods for finding common patterns in DNA sequences are discussed in Chapter 8.

2. Examples of global alignment, as well as other programs from which to choose, are given in the glob-
al alignments and iterative and other methods sections of Table 4.1.

3. cDNA sequences of the same gene from a group of organisms may be multiply aligned by a global
method so that synonymous (i.e., change the amino acid) and nonsynonymous (i.e., do not change
the amino acid) sequences may be analyzed, as described in Chapter 6 (see also note 2).

4. A convincing alignment should include a series of columns in which a majority of the sequences have
the same amino acid or an amino acid that is a conservative substitution for that amino acid, with rel-
atively few examples of other substitutions or gaps in these columns. These columns of alike amino
acids should be found throughout the alignment, often clustered into domains. There may also be
variable regions in the alignment that represent sequences that diverged more during the evolution of
the protein family.

5. This decision rests on whether or not there are enough sequences on which to build a hidden Markov
model of the entire alignment or of a well-defined region in the alignment (a profile hidden Markov
model). For sequences that are related but show considerable variations in many columns, as many as
100 sequences may be needed to produce a hidden Markov model of the alignment. This number is
reduced to approximately 2550 if there is less variation among the sequences. A scoring matrix rep-
resenting the sequence variation found in each column of the alignment may also be made. These
matrices may accommodate gaps in the alignment (a profile or HMM profile) or may not include gaps
(position-specific scoring matrix).

6. For finding patterns common to the sequences, pattern-searching algorithms and statistical methods
are used. The former search for a set of matched sequence characters that are present in the sequences.
The latter perform an exhaustive analysis of sequence “windows” in the sequences to find the most
alike amino acid patterns by the expectation maximization (EM) or Gibbs sampling algorithms. These
methods are described in the text.

MULTIPLE SEQUENCE ALIGNMENT AS AN EXTENSION OF SEQUENCE PAIR
ALIGNMENT BY DYNAMIC PROGRAMMING

The dynamic programming algorithm described in Chapter 2 provides an optimal align-
ment of two sequences. In the program MSA (Lipman et al. 1989), application of the glob-
al alignment algorithm has been extended to provide an optimal alignment of a small
number of sequences greater than two. Gupta et al. (1995) have shown, however, that MSA
rarely produces a provable optimal alignment. The number of sequences that can be
aligned is limited because the number of computational steps and the amount of memory
required grow exponentially with the number of sequences to be analyzed. This limitation
means that the program has somewhat limited application to a small number of sequences.

Recall that the dynamic programming method of sequence alignment between two
sequences builds a scoring matrix where each position provides the best alignment up to
that point in the sequence comparison. The number of comparisons that must be made to
fill this matrix without using any short cuts and excluding gaps is the product of the length
of the two sequences. Imagine extending this analysis to three or more sequences. For three
sequences, instead of the two-dimensional matrix for two sequences, think of the lattice of
a cube that is to be filled with calculated dynamic programming scores. Scoring positions
on three surfaces of the cube will represent the alignment values between a pair of the
sequences, ignoring the third sequence, as illustrated in Figure 4.2. In MSA, positions
inside the lattice of the cube are given values based on the sum of the initial scores of the
three pairs of sequences.
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For three protein sequences each 300 amino acids in length and excluding gaps, the
number of comparisons to be made by dynamic programming is equal to 300° = 2.7 X
107, whereas only 300* = 9 X 10* is required for two sequences of this length. This num-
ber is sufficiently small that alignment of three sequences by this method is practical. For
alignment of more than three sequences, one has to imagine filling an N-dimensional space
or hypercube. The number of steps and memory required for a 300-amino-acid sequence
(300™, where N is the number of sequences) then becomes too large for most practical pur-
poses, and it is necessary to find a way to reduce the number of comparisons that must be
made without compromising the attempt to find an optimal alignment. Fortunately, Car-
rillo and Lipman (1988) found such a method, called the sum of pairs, or SP method. Since
the publication of the MSA program, Gupta et al. (1995) have substantially reduced the
memory requirements and number of steps required. The enhanced version of MSA is
available by anonymous FTP from fastlink.nih.gov/pub/msa.

The basic idea is that a multiple sequence alignment imposes an alignment on each of
the pairs of sequences. The heavy arrow in Figure 4.2 represents the path followed in the
cube to find a msa for three sequences, but the msa can be projected on to the sides of the
cube, thus defining an alignment for each pair of sequences. The alignments found for each
pair of sequences likewise impose bounds on the location of the msa within the cube, and
thus defines the number of positions within the cube that have to be evaluated. Pair-wise
alignments are first computed between each pair of sequences. Next, a trial msa is pro-
duced by first predicting a phylogenetic tree for the sequences (Saitou and Nei 1987; see
Chapter 6 for the neighbor-joining method of tree construction), and the sequences are

sequence B

sequence A

Figure 4.2. Alignment of three sequences by dynamic programming. Arrows on the surfaces of the
cube indicate the direction for filling in the scoring matrix for pairs of sequences, A with B, etc., per-
formed as previously described. The alignment of all three sequences requires filling in the lattice of
the cube space with optimal alignment scores following the same algorithm. The best score at each
interior position requires a consideration of all possible moves within the cube up to that point in
the alignment. The trace-back matrix will align positions in all three sequences including gaps.
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then multiply aligned in the order of their relationship on the tree. This method is used by
other programs described below (e.g., PILEUP, CLUSTALW) and provides a heuristic
alignment that is not guaranteed to be optimal. However, the alignment serves to provide
a limit to the space within the cube within which optimal alignments are likely to be found.
In Figure 4.3, the green area on the left surface of the cube is bounded by the optimal align-
ment of sequences B and C and a projection of the heuristic alignment for all three
sequences. The orange and blue areas are similarly defined for other sequence pairs. The
dark gray volume within the cube is bounded by projections from each of the three surface
areas. For more sequences, a similar type of analysis of bounds may be performed in the
corresponding higher-order space.

In practice, MSA calculates the multiple alignment score within the cube lattice by
adding the scores of the corresponding pair-wise alignments in the msa. This measure is
known as the SP measure (for sum of pairs), and the optimal alignment is based on obtain-
ing the best SP score. These scores may or may not be weighted so as to reduce the influ-
ence of more closely related sequences in the msa. The Dayhoff PAM250 matrix and an
associated gap penalty are used by MSA for aligning protein sequences. MSA uses a con-
stant penalty for any size of gap and scores gaps according to the scheme illustrated in Fig-
ure 4.4 (Altschul 1989; Lipman et al. 1989). MSA calculates a value € for each pair of
sequences that provides an idea of how much of a role the alignment of those two
sequences plays in the msa. € for a given sequence pair is the difference between the score
of the alignment of that pair in the msa and the score of the optimal pair-wise alignment.
The bigger the value of €, the more divergent the msa from the pair-wise alignment and the
smaller the contribution of that alignment to the msa. For example, if an extra copy of one

Figure 4.3. Bounds within which an optimal alignment will be found by MSA for three sequences.
For MSA to find an optimal alignment among three sequences by the DP algorithm, it is only nec-
cessary to calculate optimal alignment scores within the gray volume. This volume is bounded on
the one side by the optimal alignments found for each pair of sequences, and on the other by a
heuristic multiple alignment of the sequences. The colored areas on each cube surface are two-
dimensional projections of the gray volume.
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Natural gap cost  Quasi-natural gap cost

sequence 1 X — — = X
sequence 2 X X — X X 3 4
sequence 3 X X X X X

Figure 4.4. Method of scoring gap penalties by the msa program MSA. x indicates aligned residues,
which may be a match or a mismatch, and — indicates a gap. In this example, each gap cost is 1,
regardless of length. The “natural” gap cost is the sum of the number of gaps in all pair-wise com-
binations (sequences 1 and 2, 1 and 3, and 2 and 3). Note that the alignment of a gap of three in
sequence 1 with a gap of length one in sequence 2 scores as gap of 1 because the gap in sequence 1
is longer. The quasi-natural gap cost is the natural cost for the gap plus an additional value for any
gap that begins and ends within another. In this example, there is an additional penalty score for the
presence of a single gap in sequence 2 that falls within a larger gap in sequence 1. The inclusion of
this extra cost for a gap has little effect on the alignments produced but provides an enormous reduc-
tion in the amount of information that must be maintained in the DP scoring matrix (Altschul
1989), thus making possible the simultaneous alignment of more sequences by MSA.

of the sequences is added to the alignment project, then € for sequence pairs that do not
include that sequence will increase, indicating a lesser role because the contributions of
that pair have been out-voted by the alike sequences (Altschul et al. 1989). Weighting the
sequence pairs is designed to get around the common difficulty that some pairs in most
sets of sequences are similar. Another score 8 is the sum of the €s and gives an indication
of the degree of divergence among the sequences—closely related sequences will have low
es and &s and distantly related sequences will have high es and 8s.

The MSA program avoids the bias in an alignment due to alike sequences by weighting
the pair-wise scores before they are added to give the SP score. These weights are deter-
mined by using the predicted tree of the sequences discussed above. The pair-wise scores
between all sequence pairs are adjusted to reduce the influence of the more unlike sequence
pairs that occupy more distant “leaves” on the evolutionary tree (i.e., by sequences that are
joined by more branches) based on the argument that these sequence pairs provide less
useful information for computing the msa. This scheme is different from that used by
other msa programs (see below), which generally increase the weight of scores from more
distant sequences because these sequences represent greater divergence in the evolutionary
tree (see Vingron and Sibbald 1993).

In using MSA, several additional practical considerations should be considered
(described on MSA Web sites given in Table 4.1): (1) MSA is a heavy user of machine
resources and is limited to a small number of sequences of relatively short lengths. (2) In
the UNIX command line mode of the program, there are options that allow users to spec-
ify gap costs, force the alignment of certain residues, specify maximum values for €, and
tune the program in other ways. (3) When the output shows that some € are greater than
the respective maximum g, a better alignment usually can be found by increasing the max-
imum e in question. However, increasing € also increases the computational time. (4) If
the program bogs down, try dividing the problem into several smaller ones.

Below is an example from http://www.psc.edu of using MSA to align a group of phos-
pholipase a2 proteins. Note that the program uses the FASTA sequence format. The fol-
lowing steps are used:

1. Calculate all pair-wise alignment scores (alignment costs).
2. Use the scores (costs) to predict a tree.

3. Calculate pair weights based on the tree.
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4. Produce a heuristic msa based on the tree.

5. Calculate the maximum e for each sequence pair.
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6. Determine the spatial positions that must be calculated to obtain the optimal align-

ment.
7. Perform the optimal alignment.

8. Report the € found compared to the maximum e.
Example of MSA

MSA release 2.1 (PSC revision b) started on Thu Jun 19 14:55:31 1997
Sequence file format is Fasta.

Calculating pairwise alignments.

kK k Kk ok ok kkok ok

Calculating weights.

———————————————— Tree given from ancestor ---——————————-———

On the left: Internal Node Distance to parent = 278.83
On the left: Internal Node Distance to parent = 23.63
On the left: Internal Node Distance to parent = 118.62
On the left: SEQ#01 Distance to parent = 230.50
On the right: SEQ#04 Distance to parent = 205.50
On the right: SEQ#05 Distance to parent = 238.37
On the right: SEQ#02 Distance to parent = 256.17
On the right: SEQ#03 Distance to parent = 0.00

Calculating epsilons.

Sequence ID Description
1 SEQ#01 P1;1POA Phospholipase a2 (EC 3.1.1.4) - Chinese cobra
2 SEQ#02 P1;1POD Phospholipase a2 (EC 3.1.1.4) - human
3 SEQ#03 P1;1PPA Phospholipase a2 (EC 3.1.1.4) lys 49 variant
4 SEQ#04 P1;1BPQ phospholipase A2 (EC 3.1.1.4) mutant (K56M) -
5 SEQ#05 P1;1PP2R phospholipase A2 (EC 3.1.1.4) (calcium-free)

xx*  Heuristic Multiple Alignment ***

Ak Ak kKKK ARDIFAT] KKk KRR KK KKK KKK KKK AKX KRR KA XA XX **35074 **35214 * % %
NLYQFKNMIQCTVPSR-SWWDFADYGCYCGRGGSGTPVDDLDRCCQVHDNCYNEAEKISGC~~~—- WPYFKTYSY
NLVNFHRMIK-LTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDCCYKRLEK-RGC———--- GTKFLSYKF
SVLELGKMIL-QETGKNAITSYGSYGCNCGWGHRGQPKDATDRCCFVHKCCYKKLT-~-~-DC-———- NHKTDRYSY

ALWQFNGMIKCKIPSSEPLLDFNNYGCYCGLGGSGTPVDDLDRCCQTHDNCYKQAMKLDSCKVLVDNPYTNNYSY
SLVQFETLIM-KIAGRSGLLWYSAYGCYCGWGGHGLPQDATDRCCEFVHDCCYGKAT-~-DC--- -~ NPKTVSYTY
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*********35214 *****************14325

ECSQGTLTCKGGNNACAAAVCDCDRLAAICFAG--APYNDNDYNINLKARC-—~—~—~—
SNSGSRITC-AKQDSCRSQLCECDKAAATCFARNKTTYNKKYQYYS~NKHCRGSTPRC
SWKNKAIIC-EEKNPCLKEMCECDKAVAICLRENLDTYNKKYKAYF~KLKCKKPDT-C
SCSNNEITCSSENNACEAFICNCDRNAAICFSK--VPYNKEHKNLD-KKNC--——~——
SEENGEIIC-GGDDPCGTQICECDKAAATICFRDNIPSYDNKYWLFP~-PKDCREEPEPC

Calculating pairwise projection costs.

khkkhkhkkkkkk

Calculating multiple alignment.
d1....2....3....4....5....6....7....8....9....0

R R AR EAEREESE SRS ERESEEREREEESEESEEEE RS EERESREEEEEEE

***  QOptimal Multiple Alignment ***

NLYQFKNMIQCTVPSR-SWWDFADYGCYCGRGGSGTPVDDLDRCCQVHDNCYNEAEKISGC -~~~ -— WPYFKTYSY
NLVNFHRMIK-LTTGKEAALSYGFYGCHCGVGGRGSPKDATDRCCVTHDCCYKRLEK-RGC—---— GTKFLSYKF
SVLELGKMIL-QETGKNATITSYGSYGCNCGWGHRGOPKDATDRCCFVHKCCYKKL---TDC--—~— NHKTDRYSY
ALWOFNGMIKCKIPSSEPLLDFNNYGCYCGLGGSGTPVDDLDRCCQTHDNCYKQAMKLDSCKVLVDNPYTNNYSY
SLVQFETLIM~-KIAGRSGLLWYSAYGCYCGWGGHGLPODATDRCCFVHDCCYGKA---TDC~ -~~~ NPKTVSYTY

ECSQGTLTCKGGNNACAAAVCDCDRLAAICFAG--APYNDNDYNINLKARC-—-——-———
SNSGSRITC-AKQDSCRSQLCECDKAAATCFARNKTTYNKKYQYYS-NKHCRGSTPRC
SWKNKAIIC-EEKNPCLKEMCECDKAVAICLRENLDTYNKKYKAYF-KLKCK-KPDTC
SCSNNEITCSSENNACEAFICNCDRNAAICFSK~-VPYNKEHKNLD-KKNC-----—-
SEENGEIIC-GGDDPCGTQICECDKAAATCFRDNIPSYDNKYWLFP-PKDCREEPEPC

End gaps not penalized.

Costfile: pam250
Alignment cost: 35132 Lower bound: 34945
Delta: 187 Max. Delta: 285

Sequences Proj. Cost Pair. Cost Epsilon Max. Epsi. Weight Weight*Cost

1 2 1864 1825 39 39 1 1864
1 3 1891 1843 48 57 1 1891
1 4 1654 1653 1 5 4 6616
1 5 1814 1787 27 28 2 3628
2 3 1735 1733 2 8 4 6940
2 4 1876 1866 10 10 1 1876
2 5 1713 1712 1 8 2 3426
3 4 1901 1889 12 21 1 1901
3 5 1648 1648 0 11 2 3296
4 5 1847 1842 5 6 2 3694

Elapsed time = 0.895

Tree

A tree is cgiven for the heuristic aliaonment (not shown) .
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SCORING MULTIPLE SEQUENCE ALIGNMENTS

As discussed above, the SP method provides a way to score the msa by summing the scores
of all possible combinations of amino acid pairs in a column of a msa. The method
assumes a model for evolutionary change in which any of the sequences could be the ances-
tor of the others, as illustrated in Figure 4.5. This figure also illustrates a difficulty with the
SP method when a substitution table of log odds scores such as BLOSUMS62 is used for
protein sequences (see Durbin et al. 1998, pp. 139—-140). Shown is the effect of adding a
small number of amino acid subsitutions to a column that initially has all matching amino
acids. Scores in the msa column decrease rapidly as the number of mismatched residue
pairs increases. For a larger number of sequences than five with all N, or with one or two
C substitutions, these decreases should be greater because there will be more N-N matched
pairs relative to mismatched N-C pairs. However, the reverse is true with the SP method
of scoring. For n sequences, the number of combinations of pairs in a column is

Sequence Column A ColumnB ColumnC
1 \\ R || A
2 Noooree N
3 NN
4 Ll NN
5 L. N, Covrieeenn, C
N
~
VAINN
BV IR WS

N / \ el
\\\ \,L,\ /‘)‘/ /
[ A
N X
\\ / ,// \\\ \ II
WV
N N
Column A Column B Column C
No. of N-N matched pairs (each scores 6):
10 6 4
No. of N-C matched pairs (each scores -3):
0 4 6
BLOSUMG62 score :
60 24 6

Figure 4.5. The SP model for scoring a msa. This model represents one method for optimizing the
msa by maximizing the number of matched pairs (or minimizing the cost or number of mismatched
pairs) summed over all columns in the msa. Shown first are three columns of a five-sequence msa
with all matched (A), four matched and one mismatched (B), or three matched and two mismatched
(C) sequence characters. The SP method of calculating the cumulative scores for columns of a msa
is then illustrated by a graph with the five sequences as vertices and representing the ten possible
sequence pair-wise sequence comparisons. Solid lines represent a matched pair and dotted lines a
mismatched pair. Shown are the BLOSUMBS62 scores for each column calculated by the SP method.
(Adapted from Altschul 1989.)
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Figure 4.6. Alternative methods for scoring a column in the msa (Altschul 1989b). The variations in column C of Fig. 4.5 are
shown modeled by a phylogenetic tree (A) and a simplified phylogenetic tree called a star phylogeny (B) where one of the
sequences is treated as the ancestor of all the others (instead of treating them as all equally possible ancestors as in the original
sum of pairs scoring method).

n(n — 1)/2. If all are amino acid N, as in column A, then the BLOSUMBG62 score for the col-
umn is 6 X n(n — 1)/2. If there is one C in the column, as in column B, then n — 1 matched
N-N pairs will be replaced by n—1 mismatched N-C pairs, giving a score of 9(n — 1) less.
The score for one C in the column divided by that for zero Cs is 9(n — 1)/[6n(n — 1)/2]
= 3/n. For three sequences, the relative difference is 1, whereas for six sequences, the rela-
tive difference is 2. As more sequences are present in the column, the relative difference
increases, not in agreement with expectation. Hence, the SP method is not providing a rea-
sonable result when this type of scoring matrix is used. Two other methods for scoring a
msa (Altschul 1989) have been described and are illustrated in Figure 4.6. The first is a tree-
based method. Because a phylogenetic tree describing the relationships among the
sequences is found by the MSA program, the sum of the lengths of the tree branches can
be calculated using the substitutions in the column of the msa. Alternatively, a simplified
tree with one of the sequences as the ancestor of all of the others (a star phylogeny) can also
be used (see Chapter 6). msa programs using these methods have not been implemented.
Other scoring methods include information content (see p. 195) and a graph-based
method called the trace method (Kececioglu 1993). A novel branch-and-cut algorithm for
msa has been developed based on the trace method (Kececioglu et al. 2000). Other meth-
ods of scoring and producing an alignment guided by a tree are described below.

PROGRESSIVE METHODS OF MULTIPLE SEQUENCE ALIGNMENT

The MSA program described above for obtaining an optimal alignment of multiple
sequences is limited to three sequences or to a small number (six to eight) of relatively
short sequences. Progressive alignment methods use the dynamic programming method to
build a msa starting with the most related sequences and then progressively adding less-
related sequences or groups of sequences to the initial alignment (Waterman and Perlwitz
1984; Feng and Doolittle 1987, 1996; Thompson et al. 1994a; Higgins et al. 1996). Rela-
tionships among the sequences are modeled by an evolutionary tree in which the outer
branches or leaves are the sequences (Fig. 4.7). The tree is based on pair-wise comparisons
of the sequences using one of the phylogenetic methods described in Chapter 6. Progeni-
tor sequences represented by the inner branches of the tree are derived by alignment of the
outermost sequences. These inner branches will have uncertainties where positions in the
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N K/-Y/F L/-S

Figure 4.7. Progressive sequence alignment. Sequences are represented as the outermost branches
(leaves) on an evolutionary tree. The most closely related sequences are first aligned by dynamic pro-
gramming, providing a representation of ancestor sequences in deeper branches with uncertainties
where amino acids have been substituted or positioned opposite a gap. These sequences are the same
as those shown in EVMSA. The challenge to the msa method is to utilize an appropriate combina-
tion of sequence weighting, scoring matrix, and gap penalties so that the correct series of evolution-
ary changes may be found.

outermost sequences are dissimilar, as illustrated in Figure 4.7. Two examples of programs
that use progressive methods are CLUSTALW and the Genetics Computer Group program
PILEUP.

CLUSTAL has been around for more than 10 years, and the authors have done much to
support and improve the program (Higgins and Sharp 1988; Thompson et al. 1994a; Hig-
gins et al. 1996). CLUSTALW is a more recent version of CLUSTAL with the W standing
for “weighting” to represent the ability of the program to provide weights to the sequence
and program parameters, and CLUSTALX provides a graphic interface (see Table 4.1).
These changes provide more realistic alignments that should reflect the evolutionary
changes in the aligned sequences and the more appropriate distribution of gaps between
conserved domains.

CLUSTAL performs a global-multiple sequence alignment by a different method than
MSA, although the initial heuristic alignment obtained by MSA is calculated the same way.
The steps include: (1) Perform pair-wise alignments of all of the sequences; (2) use the
alignment scores to produce a phylogenetic tree (for an explanation of the neighbor-join-
ing method that is used, see Chapter 6); and (3) align the sequences sequentially, guided
by the phylogenetic relationships indicated by the tree. Thus, the most closely related
sequences are aligned first, and then additional sequences and groups of sequences are
added, guided by the initial alignments to produce a msa showing in each column the
sequence variations among the sequences. The initial alignments used to produce the guide
tree may be obtained by a fast k-tuple or pattern-finding approach similar to FASTA that
is useful for many sequences, or a slower, full dynamic programming method may be used.
An enhanced dynamic programming alignment algorithm (Myers and Miller 1988; see
book Web site) is used to obtain optimal alignment scores. For producing a phylogenetic
tree, genetic distances between the sequences are required. The genetic distance is the
number of mismatched positions in an alignment divided by the total number of matched
positions (positions opposite a gap are not scored).

As with MSA, sequence contributions to the msa are weighted according to their rela-
tionships on the predicted evolutionary tree. A rooted tree with known branch lengths of
which the sequences are outer branches (leaves) is examined (see Chapter 6). Weights are
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based on the distance of each sequence from the root, as illustrated in Figure 4.8. The align-
ment scores between two positions in the msa are then calculated using the resulting
weights as multiplication factors.

The scoring of gaps in a msa has to be performed in a different manner from scoring
gaps in a pair-wise alignment. As more sequences are added to a profile of an existing msa,
gaps accumulate and influence the alignment of further sequences (Thompson et al. 1994b;
Taylor 1996). CLUSTALW calculates gaps in a novel way designed to place them between
conserved domains. When Pascarella and Argos (1992; see book Web site) aligned
sequences of structurally related proteins, the gaps were preferentially found between sec-
ondary structural elements. These authors also prepared a table of the observed frequency

A. Calculation of sequence weights

0.0 Weighting factor
———— A 02+0.3/2=0.35

0.3
|01 B 0.1+0.3/2=0.25

0.5

C 05

B. Use of sequence weights
Column in alignment 1
Sequence A (weighta)  ......... | CT

Sequence B (weightb) ... lveeeen.

Column in alignment 2
Sequence C (weightc)  ......... L........
Sequence D (weightd)  ......... Vi

Score for matching these two column in an msa =

[axcxscore (K,L) +
ax d x score (K,V) +
b x ¢ x score (I,L) +
bxdxscore (,V)]/4

Figure 4.8. Weighting scheme used by CLUSTALW (Higgins et al. 1996). (A) Sequences that arise
from a unique branch deep in the tree receive a weighting factor equal to the distance from the root.
Other sequences that arise from branches shared with other sequences receive a weighting factor that
is less than the sum of the branch lengths from the root. For example, the length of a branch com-
mon to two sequences will only contribute one-half of that length to each sequence. Once the spe-
cific weighting factors for each sequence have been calculated, they are normalized so that the largest
weight is 1. As CLUSTALW aligns sequences or groups of sequences, these fractional weights are
used as multiplication factors in the calculation of alignment scores. (B) Illustration of using
sequence weights for aligning two columns in two separate alignments. Note that this sequence
weighting scheme is the opposite to that used by MSA, because the more distant a sequence from the
others, the higher the weight given. For a comparison of additional weighting schemes, see Vingron
and Sibbald (1993).
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of gaps next to each amino acid in these regions. CLUSTALW uses the information in this
table and also attempts to locate what may be the corresponding domains by appropriate
gap placement in the msa. Like other alignment programs, CLUSTAL uses a penalty for
opening a gap in a sequence alignment and an additional penalty for extending the gap by
one residue. These penalties are user-defined (defaults are available). Gaps found in the
initial alignments remain fixed. New gaps introduced as more sequences are added also
receive this same gap penalty, even when they occur within an existing gap, but the gap
penalties for an alignment are then modified according to the average match value in the
substitution matrix, the percent identity between the sequences, and the sequence lengths
(Higgins et al. 1996). These changes are attempts to compensate for the scoring matrix,
expected number of gaps (alignment with more identities should have fewer gaps), and dif-
ferences in sequence length (should limit placement of gaps if one sequence shorter).
Tables of gaps are then calculated for each group of sequences to be aligned to confine
them to less conserved regions in the alignment. Gap penalties are decreased where gaps
already occur (another method for achieving this same result is to enhance the scores of
more closely matching regions on the alignment as described in Taylor 1996), increased in
regions adjacent to already gapped regions, decreased within stretches of hydrophilic
regions (amino acids DEGKNQPRS), and increased or decreased according to the table in
Pascarella and Argos (1992). These rules are most useful when a correct alignment of some
of the sequences is already known. The CLUSTALW algorithm and the results of using the
above sequence weighting gap adjustment method are illustrated in Figure 4.9.
CLUSTALW also has options for adding one or more additional sequences with weights
or an alignment to a existing alignment (Higgins et al. 1996). Once an alignment has been
made, a phylogenetic tree may be made by the neighbor-joining method, with corrections
for possible multiple changes at each counted position in the alignment (see Chapter 6).
The predicted trees may also be displayed by various programs described in Chapter 6.

PILEUP is the msa program that is a part of the Genetics Computer Group package of
sequence analysis programs, owned since 1997 by Oxford Communications, and is widely
used due to the popularity and availability of this package. PILEUP uses a method for msa
that is very similar to CLUSTALW. The sequences are aligned pair-wise using the Needle-
man-Wunsch dynamic programming algorithm, and the scores are used to produce a tree
by the unweighted pair-group method using arithmetic averages (UPGMA; Sneath and
Sokal 1973 and see Chapter 6). The resulting tree is then used to guide the alignment of the
most closely related sequences and groups of sequences. The resulting alignment is a glob-
al alignment produced by the Needleman-Wunsch algorithm. Standard scoring matrices
and gap opening/extension penalties are used. Unfortunately, there have not been any
recent enhancements of this program such as gap modifications or sequence weighting
comparable to those introduced for CLUSTALW. As with other progressive alignment msa
programs, PILEUP does not guarantee an optimal alignment.

Problems with Progressive Alignment

The major problem with progressive alignment programs such as CLUSTAL and PILEUP
is the dependence of the ultimate msa on the initial pair-wise sequence alignments. The
very first sequences to be aligned are the most closely related on the sequence tree. If these
sequences align very well, there will be few errors in the initial alignments. However, the
more distantly related these sequences, the more errors will be made, and these errors will
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Figure 4.9. A msa of seven globins by CLUSTALW. The protein identifiers are from the SwissProt database. The amino acid
subsitution matrix was the Dayhoff PAM250 matrix, and gap penalties were varied to emphasize conserved ungapped regions.
The approximate and known locations of seven a-helices in the structure of this group are shown in boxes. (Reprinted, with
permission, from Higgins et al. 1996 [copyright Academic Press].)

be propagated to the msa. There is no simple way to circumvent this problem. A second
problem with the progressive alignment method is the choice of suitable scoring matrices
and gap penalties that apply to the set of sequences (Higgins et al. 1996).

For the difficult task of aligning more distantly related sequences, using Bayesian meth-
ods such as hidden Markov models (HMMs) may be useful. For more closely related
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sequences, CLUSTALW is designed to provide an adequate alignment of a large number of
sequences and provide a very good indication of the domain structure of those sequences.

ITERATIVE METHODS OF MULTIPLE SEQUENCE ALIGNMENT

The major problem with the progressive alignment method described above is that errors
in the initial alignments of the most closely related sequences are propagated to the msa.
This problem is more acute when the starting alignments are between more distantly relat-
ed sequences. Iterative methods attempt to correct for this problem by repeatedly realign-
ing subgroups of the sequences and then by aligning these subgroups into a global align-
ment of all of the sequences. The objective is to improve the overall alignment score, such
as a sum of pairs score. Selection of these groups may be based on the ordering of the
sequences on a phylogenetic tree predicted in a manner similar to that of progressive align-
ment, separation of one or two of the sequences from the rest, or a random selection of the
groups. These methods are compared in Hirosawa et al. (1995).

MultAlin (Corpet 1988) recalculates pair-wise scores during the production of a pro-
gressive alignment and uses these scores to recalculate the tree, which is then used to refine
the alignment in an effort to improve the score. The program PRRP (Table 4.1) uses iter-
ative methods to produce an alignment. An initial pair-wise alignment is made to predict
a tree, the tree is used to produce weights for making alignments in the same manner as
MSA except that the sequences are analyzed for the presence of aligned regions that include
gaps rather than being globally aligned, and these regions are iteratively recalculated to
improve the alignment score. The best scoring alignment is then used in a new cycle of cal-
culations to predict a new tree, new weights, and new alignments, as illustrated in Figure
4.10. The process is repeated until there is no further increase in the alignment score
(Gotoh 1994, 1995, 1996).

The program DIALIGN (see Table 4.1) finds an alignment by a different iterative
method. Pairs of sequences are aligned to locate aligned regions that do not include gaps,
much like continuous diagonals in a dot matrix plot. Diagonals of various lengths are iden-
tified. A consistent collection of weighted diagonals that provides an alignment which is a
maximum sum of weights is then found.

Additional methods that use iterative procedures are described below.

Genetic Algorithm

The genetic algorithm is a general type of machine-learning algorithm that has no direct
relationship to biology and that was invented by computer scientists. The method has been
recently adapted for msa by Notredame and Higgins (1996) in a computer program pack-
age called SAGA (Sequence Alignment by Genetic Algorithm; see Table 4.1). Zhang and
Wong (1997) have developed a similar program. The method is of considerable interest
because the algorithm can find high-scoring alignments as good as those found by other
methods. Similar genetic algorithms have been used for RNA sequence alignment
(Notredame et al. 1997) and for prediction of RNA secondary structure (Shapiro and
Navetta 1994). Although the method is relatively new and not used extensively, it likely
represents the first of a series of sequence analysis programs that produce alignments by
attempted simulation of the evolutionary changes in sequences.

The basic idea behind this method is to try to generate many different msas by rear-
rangements that simulate gap insertion and recombination events during replication in
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Figure 4.10. The iterative procedures used by PRRP to compute a multiple sequence alignment.

(Reprinted, with permission, from Gotoh 1996 [copyright Academic Press].)

order to generate a higher and higher score for the msa. The alignments are not guaran-
teed to be optimal or to be the highest scoring that is achievable (optimal alignment).
Although SAGA can generate alignments for many sequences, the program is slow for
more than about 20 sequences.

A similar approach for obtaining a higher-scoring msa by rearranging an existing align-
ment uses a probability approach called simulated annealing (Kim et al. 1994). The pro-
gram MSASA (Multiple Sequence Alignment by Simulated Annealing) starts with a heuris-
tic msa and then changes the alignment by following an algorithm designed to identify
changes that increase the alignment score.

The success of the genetic algorithm may be attributed to the steps used to rearrange
sequences, many of which might be expected to have occurred during the evolution of the
protein family. The steps in the algorithm are as follows:

1. The sequences to be aligned (up to ~20 in number) are written in rows, as on a page,
except that they are made to overlap by a random amount of sequence, up to 50
residues long for sequences about 200 in length. The ends are then padded with gaps. A
typical population of 100 of these msas is made, although other numbers may be set.

XXXXXXXXXX =77~
T T T XXX XXX XXXXX
T XXXXXXXXXX ===
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Shown is an initial msa for the genetic algorithm (1 of ~100 in number).

. The 100 initial msas are scored by the sum of pairs method, except that both natural and
quasi-natural gap-scoring schemes (Fig. 4.4) are used. Recall that the best SSP score for
a msa is the minimum one and the one that is closest to the sum of the pair-wise
sequence alignment. Standard amino acid scoring matrices and gap opening and exten-
sion penalties are used.

. These initial msas are now replicated to give another generation of msas. The half with
the lowest SSP scores are sent to the next generation unchanged. The remaining half for
the next generation are selectively chosen by lot, like picking marbles from a bag, except
that the chance for a particular choice is inversely proportional to the msa score (the
lower the score, the better the msa, therefore gives that one a greater chance of replicat-
ing). These latter one-half of the choices for the next generation are now subject to
mutation, as described in step 4 below, to produce the children of the next generation.
All members of the next-generation msas undergo recombination to make new child
msas derived from the two parents, as described in step 5 below. The relative probabil-
ities of these separate events are governed by program parameters. These parameters are
also adjusted dynamically as the program is running to favor those processes that have
been most useful for improving msa scores.

. In the mutation process, the sequence is not changed (else it would no longer be an
alignment), but gaps are inserted and rearranged in an attempt to create a better-scor-
ing msa. In the gap insertion process, the sequences in a given msa are divided into two
groups based on an estimated phylogenetic tree, and gaps of random length are insert-
ed into random positions in the alignment. Alternatively, in a “hill-climbing” version of
the procedure, the position is so chosen as to provide the best possible score following
the change.

XXXXXXXXXX XXX 7 7 XXXXXXX
XXXXXXXXXX XXX 7 7 XXXXXXX
XXXXXXXXXX - XXXXXXXXX ==X
XXXXXXXXXX XXXXXXXXX ==X
XXXXXXXXXX XXXXXXXXX ==X

Shown above are random gap insertions into phylogenetically related sequences. The
first two and last three sequences comprise the two related groups in this example. x
indicates any sequence character.

Another mutational process is to move common blocks of sequence (overlapping
ungapped regions) delineated by a gap, or blocks of gaps (overlapping gaps). Some of
the possible moves are illustrated below. These moves may also be tailored to improve
the alignment score.

XXX 77 XXXXX

XX 7 7 XXXXXX

XXX 77 XXXXX

XXXXX ™ = XXX

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
XX 77 XXXXXX X7 7 XXX XXXX XXX 77 XXXXX XX = XX XXXX
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
Starting block Whole block Split block Split block
move horizontally vertically
(guided by

phylogenetic grouping)
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5. Recombination among next-generation parent msas is accomplished by one of two
mechanisms. The first is not homology-driven. One msa is cut vertically through, and
the other msa is cut in a staggered manner that does not lose any sequence after the frag-
ments are spliced. The higher scoring of the two reciprocal recombinants is kept. The
second, illustrated below, is recombination between msas driven by conserved sequence
positions. It is driven by homology expressed as a vertical column of the same residue

and is very like standard homologous recombination.

XXGXXXXDXX
XXGEX - xxDxx
XXGEXX - XxDXX
XXGXXXXDXX

Parent A
alignment

XXGXX-XxDxX
XXGXXXXDXX
XXGXXXXDXX
XXGX - xxDxx

Parent B
alignment

XXGXX-XxDXxX
XXGXXXXDXX
XXGXXXXDXX
XXGX - XxxDxXx

Child

alignment

6. The next generation, an overlapping one of the previous one-half of the best-scoring
parental msas and the mutated children, is now evaluated as in step 2, and the cycle of
steps 2-5 is typically repeated as much as 100 times, although as many as 1000 genera-
tions can be run. The best-scoring msa is then obtained.

7. The entire process of producing a set of msas for replication and mutation is repeated
several times to obtain several possible msas, and the best scoring is chosen.

Hidden Markov Models of Multiple Sequence Alignment

The HMM is a statistical model that considers all possible combinations of matches, mis-
matches, and gaps to generate an alignment of a set of sequences. A localized region of sim-
ilarity, including insertions and deletions, may also be modeled by an HMM. Analysis of
sequences by an HMM is discussed on page 185 along with other statistical methods.

OTHER PROGRAMS AND METHODS FOR MULTIPLE SEQUENCE ALIGNMENT

The msa method often used, especially for 10 or more sequences, is to first determine
sequence similarity between all pairs of sequences in the set. On the basis of these similar-
ities, various methods are used to cluster the sequences into the most related groups or into
a phylogenetic tree.

In the group approach, a consensus is produced for each group and then used to make
further alignments between groups. Two examples of programs using the group approach
are the program PIMA (Smith and Smith 1992), which uses several novel alignment tech-
niques, and the program MULTAL described by Taylor (1990, 1996; see Table 4.1).

The tree method uses the distance method of phylogenetic analysis to arrange the
sequences. The two closest sequences are then aligned, and the resulting consensus align-
ment is aligned with the next best sequence or cluster of sequences, and so on, until an
alignment is obtained that includes all of the sequences. The programs PILEUP and
CLUSTALW discussed above are examples. The ALIGN set of programs (Feng and Doolit-
tle 1996) and the MS-DOS program by Corpet (1988) use this method. Additional pro-
grams for msa are also described in Barton (1994), Kim et al. (1994), and Morgenstern et
al. (1996).

Another program (Vingron and Argos 1991) aligns all possible pairs of sequences to cre-
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ate a set of dot matrices, and the matrices are then filtered sequentially to find motifs that
provide a starting point for sequence alignment. A set of programs for interactive msa by
dot matrix analysis and other alignment techniques has also been developed (Boguski et al.
1992).

The program TREEALIGN takes the approach that multiple sequence alignments
should be done in a fashion that simultaneously minimizes the number of changes needed
during evolution to generate the observed sequence variation (Hein 1990). TREEALIGN
(also named ALIGN in the program versions) has a method for performing the alignment
and the most parsimonious tree construction at the same time. The initial steps are simi-
lar to other multiple sequence alignment methods, except for the use of a distance scale:
i.e., the sequences are aligned pair-wise and the resulting distance scores are used sequen-
tially to produce a tree, which is rearranged as more sequences are added. The sequences
are then realigned so that the same tree can be produced by maximum parsimony. Final-
ly, the tree is rearranged to maximize parsimony. The advantage to this method is the
increased use of phylogenetic analysis to improve the multiple sequence alignment.

LOCALIZED ALIGNMENTS IN SEQUENCES

Profile Analysis

Multiple sequence alignment programs based on the methods discussed above report a
global alignment of the sequences, including all parts of all sequences. A portion of the
alignment that is highly conserved may then be identified and a type of scoring matrix
called a profile may be produced. A profile includes scores for amino acid substitutions and
gaps in each column of the conserved region so that an alignment of the region to a new
sequence can be determined. Alternatively, the alignment may be scanned for regions that
include only substituted regions without gaps, called blocks, and these blocks may then be
used in sequence alignments.

There is also a third method for finding a localized region of sequence similarity in a set
of sequences without first having to produce an alignment. In this method, the sequences
are analyzed by pattern-searching or statistical methods. All of these methods for finding
localized sequence similarity are discussed below.

Profiles are found by performing the global msa of a group of sequences and then remov-
ing the more highly conserved regions in the alignment into a smaller msa. A scoring matrix
for the msa, called a profile, is then made. The profile is composed of columns much like a
mini-msa and may include matches, mismatches, insertions, and deletions. A tutorial on
preparing profiles by the first method, prepared by M. Gribskov, is at Web address
http://www.sdsc.edu/projects/profile/profile_tutorial.html, and the Web site at
http://www.sdsc.edu/projects/profile/ will perform a motif analysis on the University of Cal-
ifornia at San Diego Supercomputer Center. The program Profilemake can be used to pro-
duce a profile from a msa (Gribskov et al. 1987, 1990; Gribskov and Veretnik 1996). A
version of the Profilesearch program, which performs a database search for matches
to a profile, is available at the University of Pittsburgh Supercomputer Center
(http://www.psc.edu/general/software/packages/profiless/profiless.html). A special grant
application may be needed to use this facility. Profile-generating programs are available by
FTP from ftp.sdsc.edu/pub/sdsc/biology and are included in the Genetics Computer Group
suite of programs (http://www.gcg.com/), although the more recent features (Gribskov and
Veretnik 1996) are not included in GCG, v. 9.1.



162

CHAPTER 4

Once produced, the profile is used to search a target sequence for possible matches to
the profile using the scores in the table to evaluate the likelihood at each position. For
example, the table value for a profile that is 25 amino acids long will have 25 rows of 20
scores, each score in a row for matching one of the amino acids at the corresponding posi-
tion in the profile. If a sequence 100 amino acids in length is to be searched, each 25-
amino-acid-long stretch of sequence will be examined, 1-25, 2-26, . . . . 76-100. The first
25-amino-acid-long stretch will be evaluated using the profile scores for the amino acids
in that sequence, then the next 25-long stretch, and so on. The highest-scoring sections will
be the most similar to the profile.

The disadvantage of this method of profile extraction from an msa is that the profile
produced is only as representative of the variation in the family of sequences as the msa
itself. If several sequences in the msa are similar, the msa and the derived profile will be
biased in favor of those sequences. Methods have been devised for partially circumventing
this problem with the profile (Gribskov and Veretnik 1996), but the difficulty with the msa
itself is not easily reconciled, as discussed at the beginning of this section. Sequence weight-
ing is based on the production of a simple phylogenetic tree by distance methods; more
closely related sequences then receive a reduced weight in the profile. Another problem is
that some amino acids may not be represented in a particular column because not enough
sequences have been included. Athough absence of an amino acid may mean that the
amino acid may not occur at that position in the protein family, adding counts to such
positions generally increases the usefulness of the profile. This feature is built into the pro-
file method discussed below.

An example of the generation of a profile and the matrix representation of this profile
for a set of heat shock proteins is illustrated in Figure 4.11. The profile is similar to the log
odds form of the amino acid substitution table, such as the PAM250 and BLOSUM®62

Cons A B C D E F G H I K L M N P Q R S T V W Y Z Gap Len
I 8 3 -2 5 4 5 5 -4 24 0 1513 1 1 1 -7 2 2221 -18 -6 4 100 100
T 1319 -5 24 18 -18 19 7 1 7 -7 -41411 10 -1 9 29 3 -28 -14 15 100 100
L 5 5 -5 3 4 13 4 2 8 -4 1412 8 -5 0 -10 0 10 10 -1 5 2 22 22
s 17 14 17 13 10 -12 29 -5 -5 6 -14 -9 12 10 0 -234 19 1 -8 -15 4 100 100
T 15 3 22 ¢ -1 -512 -2 7 -3 -8-6 5 7 -8 -7 16 29 9 =22 6 -4 100 100
T 8 -1 12 -2 0 5 6 ~419 -4 8 5-1 2 -8 -8 7 2219 -15 4 -3 100 100
c 17 24 -1 -3 1 8 -1 7 -10 1-2 1-3 -8-14 8 5 9 -5 14 -7 100 100
v 11 0 -1 -2 2 14 -10 26 -4 9 7-3 7 -7-7 2% 10 31 -19 -5 -5 100 100
C 1¢- -8 15 -11 -11 6 8 -711 -10 4 3 -7 0 -11 -4 11 5 15 =22 14 -11 100 100
v 7 7 -3 8 8 -311 120 -1 14 10 4 2 8 -5 0 5 26 -24 -6 8 100 100

Figure 4.11. Pattern identification by the profile method. A set of heat shock 70 (hsp70) proteins from a diverse group of
organisms were aligned by the Genetics Computer Group msa program PILEUP. A profile was then made from one region
in the alignment with the Genetics Computer Group program Profilemake. The profile represents the specific motif pattern
found for the chosen location shown for this set of hsp70 proteins. The first column gives the consensus amino acid at each
position in the profile. Thus, the consensus pattern is ITLSTTCVCV. This profile is used to search a target sequence for
matches to the profile. The table values are a log odds score of giving the probability of finding the amino acid in the target
sequence at that position in the profile divided by the probability of aligning the two amino acids by random chance. If a gap
must be placed in the target sequence to align the sequence with the profile, then the penalties for opening a gap and extend-
ing the gap, respectively, are subtracted. The profile itself may include gaps, in which case the penalty is reduced, as seen for
example in the row 3 of the profile table. The method of producing the substitution scores shown in the table is described in
the text.
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matrices used for sequence alignments. The matrix is 23 columns wide, one column for
each of the 20 amino acids, plus one column for an unknown amino acid z and two
columns for a gap opening and extension penalty. There is one row for each column in the
msa. The consensus sequence, derived from the most common amino acid in each column
of the msa, is listed down the left-hand column. The scores on each row reflect the num-
ber of occurrences of each amino acid in the aligned sequences. For example, in the first
row, I, T, and V were found, with I being the majority amino acid. The highest positive
score on each row (underlined) is in the column corresponding to the consensus amino
acid, the most negative score for an amino acid not expected at that position. These values
are derived from the log odds amino acid substitution matrix that was used to produce the
alignment, such as the log odds form of the Dayhoff PAM250 matrix. Two methods are
used to produce profile tables, the average method and the evolutionary method. The evo-
lutionary method seems somewhat better for finding family members.

In the average method, the profile matrix values are weighted by the proportion of each
amino acid in each column of the msa. For example, if column 1 in the msa has 5 Ile (1),
3 Thr (T), and 2 Val (V), then the frequency of each amino acid in this column is 0.5 I,
0.3 T, and 0.2 V. These amino acids are considered to have arisen with equal probability
from any of the 20 amino acids as ancestors. In the example in Figure 4.11, the I, T, and
V in column 1 could have arisen from any of the 20 amino acids by mutation. Suppose
that they arose from an Ile (I). The profile values in the Ile (I) column of the correspond-
ing row in the profile matrix would then use the amino acid scoring matrix values for I-I,
I-T, and I-V, which are log odds scores of 5, 0, and 4 in the Dayhoff PAM250 matrix. Then
the profile value for the I column is the frequency-weighted value, or 0.5 X 5 + 0.3 X 0
+ 0.2 X 4 =3.3.

The profile table also includes penalties for matching a gap in the target sequence,
shown in the two right columns. All of these table values are multiplied by a constant for
convenience so that only the value of a score with one sequence relative to the score with
another sequence matters. Once a profile table has been obtained, the table may be used in
database searches for additional sequences with the same pattern (program Profilesearch)
or as a scoring matrix for aligning sequences (program Profilegap). If several profiles char-
acteristic of a protein family can be identified, the chance of a positive identification of
additional family members is greatly increased (Bailey and Gribskov 1998; also see
http://www.sdsc.edu/MEME).

The evolutionary method for producing a profile table is based on the Dayhoff model of
protein evolution (Chapter 2) (Gribskov and Veretnik 1996). The amino acids in each col-
umn of the msa are assumed to be evolving at a different rate, as reflected in the amount
of amino acid variation that is observed. As with the average model, the object is to con-
sider each of the 20 amino acids as a possible ancestor of the pattern of each column. In
the evolutionary model, the evolutionary distance in PAM units that would be required to
give the observed amino acid distribution in each column is determined. Recall that each
PAM unit represents an overall probability of 1% change in a sequence position. For exam-
ple, in the original Dayhoff PAM1 matrix for an evolutionary distance of 1 PAM unit (very
roughly 10 my), the probability of an I not changing is 0.9872, and the probabilities for
changing toa T ora V are 0.0011 and 0.0057, respectively. All of the probabilities of chang-
ing I to any other amino acid add up to 1.0000, for a combined probability of change of
1% for I. For an evolutionary distance of n PAM, the PAM1 matrix is multiplied by itself
n times to give the expected changes at that distance. At a distance of 250 PAMs, the above
three probabilities of an I not changing or of changing to a T or V are 0.10, 0.06, and 0.15,
respectively, representing a much greater degree of change than for a shorter time, as might
be expected (Dayhoff 1978).
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Do not confuse these
probabilities of one
amino acid changing
to another in the orig-
inal Dayoff PAM250
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from the log odds form
of the PAM250
matrix, which have
been used up to now.
The log odds scores are
derived from the origi-
nal Dayhoff matrix by
dividing each proba-
bility of change with
the probability of a
chance matching of
the amino acids in a
sequence alignment;
i.e., that the one
amino acid is not an
ancestor of the other.
These ratios are then
converted to loga-
rithms.
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Thus, for the example of the msa column 1 with 5 Ile (I), 3 Thr (T), and 2 Val (V), the
object is to find what amount of PAM distance from each of the 20 amino acids as possi-
ble ancestors will generate this much diversity. This amount can be found by a formula giv-
ing the amount of information (entropy) of the observed column variation given the
expected variation in the evolutionary model,

H= —‘Z falog(pa) (1)

where f, is the observed proportion of each amino acid a in the msa column and p, is the
expected frequency of the amino acid when derived from a given ancestor amino acid. For
a given column in the msa, H is calculated for each 20 ancestor amino acids and for a large
number of evolutionary distances (PAM1, PAM2, PAM4, . . . . ). The distance that gives
the minimum value for H for each column-possible ancestor combination is the best esti-
mate of the distance that generates the column diversity from that ancestor. This analysis
provides 20 possible models (M, for a = 1,2,3, ... 20) as to how the amino acid frequen-
cies in a column (F) may have originated. The next step in the evolutionary profile con-
struction determines the extent to which each M, predicts F by the now-familiar Bayes
conditional probability analysis.

P (M,IF) = P (M,) X P (FIM,)/ Z P (M,) X P(FIM,) (2)

where the prior distribution P (M,) is the given by the background amino acid frequencies
and

p (F | Ma) = paal aal X paa2ﬁm2 X paa3faa3 ......... paazoﬁmzo (3)

i.e., the product of the expected amino acid frequencies in M, raised to the power of
the fraction observed for each amino acid in the msa column, as defined above. From
P (M, | F), the weights for each of the 20 possible distributions that give rise to the msa col-
umn diversity are calculated as follows:

Wa =l (Ma | F) =/ (Mrandom l F) (4)

where W, is the weight given to M, and P (M;andom | F) is calculated as above using the
background amino acid distribution.
The log odds scores for the profile (Profile;j) are given by:

Profile;; = log [ ; (Wai X Paij)/Prandom j (5)

where W,; is the weight of an ancestral amino acid a at row i in the profile, p,; is the fre-
quency of amino acid j in the PAM amino acid distribution that best matches at row i, and
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Prandom j 18 the background frequency of amino acid j. An example of a profile matrix for
the ATP-dependent RNA helicase (“DEAD” box family) from the M. Gribskov laboratory
is given in Figure 4.12.

The usefulness of the evolutionary profile is demonstrated by the following: A profile for
the 4Fe-4S ferredoxin family was prepared from six sequences. This profile was then used
to search the SwissProt database for family members. Success was measured by the so-
called receiver operating characteristic test (ROC) plot. The fraction of scores equal to or
greater than a certain value is plotted for the true positive matches (a correct family mem-
ber identified) on the y axis and for the true negatives (unrelated sequences) on the x axis.
The area under the curve and the x axis gives the probability of correct identification. The
ROCs is the area under the curve when it is truncated to the first 50 incorrect sequences,
and can be used as a standard for success in a database search (Gribskov and Veretnik
1996). For the ferredoxin family search, the ROCsy, 95.6 * 0.6% of the known family
members, was identified in a search of SwissProt by an evolutionary profile, whereas 93.0
* 2.0% was identified by the average profile method (Gribskov and Veretnik 1996). The
success rate was increased 0.4-0.6% by using 12 training sequences and 2—3% by using 134
training sequences.

Like profiles, blocks represent a conserved region in the msa. Blocks differ from profiles in
lacking insert and delete positions in the sequences. Instead, every column includes only
matches and mismatches. Like profiles, blocks may be made by searching for a section of
an msa alignment that is highly conserved. However, aligned regions may also be found by
searching each sequence in turn for similar patterns of the same length. These patterns may
include a region with one or a few matching characters followed by a short spacer region
of unmatched characters and then by another set of a few matching characters, and so on,
until the sequences start to be different. These patterns are all of the same length, and when
they are aligned, the matching sequence characters will appear in columns. The first align-
ments of this type were performed by computer programs that searched for patterns in
sequences (Henikoff and Henikoff 1991; Neuwald and Green 1994). Several blocks locat-
ed in different regions in a set of sequences may be used to produce a msa (Zhang et al.
1994), and blocks may be constructed from a set of aligned sequence pairs (Miller et al.
1994). Statistical and Bayesian statistical methods are also used to locate the most alike
regions of sequences (Lawrence et al. 1993; Lawrence and Reilly 1990). Web sites that per-
form some of these types of analyses are discussed below and also given in Table 4.1. Final-
ly, the information content of these tables can be displayed by a sequence logo (see p. 195).
Note that few of these types of analyses presently provide a method for phylogenetic esti-
mates of the sequence relationships so that sequence weighting can be used to make the
changes more reflective of the phylogenetic histories among the sequences. Additionally,
except where noted, these methods do not use substitution matrices such as the PAM and
BLOSUM matrices to score matches. Rather, they are based on finding exact matches that
have the same spacing in at least some of the input sequences, and that may be repeated in
a given sequence.

Extraction of Blocks from a Global or Local Multiple Sequence Alignment

A global msa of related protein sequences usually includes regions that have been aligned
without gaps in any of the sequences. These ungapped patterns may be extracted
from these aligned regions and used to produce blocks. Blocks found in this manner are
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A. The multiple sequence alignment.
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Figure 4.12. msa and the derived evolutionary profile.




B. The evolutionary profile. Note the location of red conserved regions in the alignment in the corresponding profile of these
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only as good as the msa from which they are derived. Using the BLOCKS
(http://www.blocks.thcrc.org/blocks/process_blocks.html), blocks of width 10-55 are
extracted from a protein msa of up to 400 sequences (Henikoff and Henikoff 1991, 1992).
The program accepts FASTA, CLUSTAL, or MSF formats, or manually reformatted msas.
Several types of analyses may be performed with such extracted blocks. The BLOCKS serv-
er primarily generates blocks from unaligned sequences. The eMOTIFs server at
http://dna.stanford.edu/emotif/ (Nevill-Manning et al. 1998) similarly extracts motifs
from msas in several msa formats and provides a formatter for additional msa formats.
These types of analyses are discussed below in greater detail.

Pattern Searching

This type of analysis was performed on groups of related proteins, and the amino acid pat-
terns that were located may be found in the Prosite catalog (Bairoch 1991). This catalog
groups proteins that have similar biochemical functions on the basis of amino acid pat-
terns such as those in the active site. Subsequently, these families were searched for amino
acid patterns by the MOTIF program (Smith et al. 1990), which finds patterns of the type
aal d1 aa2 d2 aa3, where aal and aa2 are conserved amino acids and d1 and d2 are stretch-
es of intervening sequence up to 24 amino acids long. These initial patterns are then orga-
nized into blocks between 3 and 60 amino acids long by the Henikoff PROTOMAT pro-
gram (Henikoff and Henikoff 1991, 1992). The BLOCKS database can be accessed at
http://www.blocks.thcrc.org/, and the server may also be used to produce new blocks by
the original pattern-finding method or other methods described below.

Although used successfully for making the BLOCKS database, the MOTIF program is
limited in the pattern sizes that can be found. The MOTIF program distinguishes true
motifs from random background patterns by requiring that motifs occur in a number of
the input sequences and tend not to be internally repeated in any one sequence. As the
length of the motif increases, there are many possible combinations of patterns of a given
length where only a few characters match, e.g., >10° possible patterns for a 15-amino-acid-
long pattern with only five matches. The MOTIF program always provides a motif, even
for random sequences, thus making it difficult to decide how significant the found motif
really is. This problem has been circumvented by combining the analysis performed by
MOTTF with that of the Gibbs sampler (discussed on p. 177), which is based on sound sta-
tistical principles. A rigorous searching algorithm called Aligned Segment Statistical Eval-
uation Tool (ASSET) has been devised (Neuwald and Green 1994) that can find patterns
in sequence up to 50 amino acids long, group them, and provide a measure of the statisti-
cal significance of the patterns. These patterns may also include certain pairs, the 26 posi-
tive scoring pairs in the BLOSUMS62 scoring matrix. Consideration of all BLOSUM pairs is
not possible because this would greatly increase the complexity of the analysis.

The efficiency of ASSET is achieved by a combination of an efficient pattern search
strategy called the depth-first method, which assures searching for the same patterns only
once, and the use of formulas for efficiently organizing the patterns. Low-complexity
regions with high proportions of the same residue and use of sequences, some of which are
more similar than the others, can interfere with the ability of the method to find a range of
patterns. ASSET removes low-complexity regions and redundant sequences from consid-
eration. The program was easily able to find subtle motifs in the DNA methylase, reverse
transcriptase, and tRNA ligase families, and previously identified by the MOTIF program.
In addition, however, ASSET gave these motifs an expect score, the probability that these
are random matches of unrelated sequences, of <0.001. The program also found motifs in
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families with only a fraction of the sequences sharing a motif (the acyltransferase family)
and in a set of distantly related sequences sharing the helix-turn-helix motif. Finally, the
program found several repeat sequences in a prenyltransferase and ankyrin-like repeats in
an E. coli protein. This source code of the program is available by anonymous FTP from
ncbi.nlm.nih.gov/pub/neuwald/asset. The European Bioinformatics Institute has a Web
page for another complex pattern-finding program (PRATT) at http://www2.ebi.ac.
uk/pratt/ (Jonassen et al. 1995).

Blocks Produced by the BLOCKS Server from Unaligned Sequences

As described above, the BLOCKS server can extract a conserved, ungapped region from a
msa to produce a sequence block. This same server can also find blocks in a set of
unaligned, input sequences and maintains a large database of blocks based on an analysis
of proteins in the Prosite catalog. Blocks are found by the Protomat program (Henikoff
and Henikoft 1991). Blocks are found in two steps: First, the program MOTIF (Smith et al.
1990) described on the previous page is used to locate spaced patterns. The second step
takes the best and most consistent patterns found in step 1 and uses the program
MOTOMAT to merge overlapping triplets and extend them, orders the resulting blocks,
and chooses those that are in the largest subset of sequences. Since 1993, the Gibbs sam-
pler (see below) has been used as an additional tool for finding the initial set of short pat-
terns also by specifying that the sampler search for short motifs. This program is based on
a statistical analysis of the sequences and can identify the most significant common pat-
terns in a set of sequences.

An example of BlockMaker output using an example from Lawrence et al. (1993) is
shown below. The program first searches for blocks using either the MOTIES or Gibbs
sampler program to identify patterns, then the Protomat program to consolidate the pat-
terns into meaningful blocks. The results of both types of analyses are reported.

A. Motif analysis

LipocaldA, width = 15 LipocalB, width = 11
BBP_PIEBR 16 NFDWSNYHGKWWEVA ( 70) 101 VLSTDNKNYII
ICYA_MANSE 17 DFDLSAFAGAWHEIA ( 73) 105 VLATDYKNYAT
LACB_BOVIN 25 GLDIQKVAGTWYSLA ( 70) 110 VLDTDYKKYLL
MUP2_MOUSE 27 NFNVEKINGEWHTII ( 101) 143 DLSSDIKERFA
RETB_BOVIN 14 NFDKARFAGTWYAMA ( - 77) 106 IIDTDYETFAV
B. Gibbs sampler analysis
Lipocald, width = 15 LipocalB, width = 11
BBP_PIEBR 16 NEFDWSNYHGKWWEVA ( 70) 101 VLSTDNKNYII
ICYA_MANSE 17 DFDLSAFAGAWHETA ( 73) 105 VLATDYKNYAIL
LACB_BOVIN 25 GLDIQKVAGTWYSLA ( 70) 110 VLDTDYKKYLL
MUPZ2_MOUSE 27 NFNVEKINGEWHTII ( 68) 110 IPKTDYDNFLM
RETB_BOVIN 14 NFDKARFAGTWYAMA ( 77) 106 IIDTDYETFAV
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In the above example, two blocks identified as Lipocal A and B are reported using both
the MOTIF and Gibbs sampler programs for step 1, the initial pattern-finding step. The
MOTIF program is based on a heuristic method that will always find motifs, even in ran-
dom sequences, whereas the Gibbs sampler discriminates found motifs based on sound
statistical methods. These blocks are identical to those determined from analysis of three-
dimensional structures. Note that MOTIF aligned MUP2_MOUSE incorrectly in the B

a MFRRKAFLHWYTGEGMDEMEF TEAESNMNDPVAEYQQY
MFKRKAFLHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFKRKAFLHWYTGEGMDEMEFTEVRANMNDLVAEYQQY
MFKRKAFLHWYTSEGMDELEFSEAESNMNDLVSEYQQY
MFKRKGFLHWYTGEGMEPVEFSEAQSDLEDL | LEYQQY
MFRRKAF LHWF TGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRKAFLHWYTGEGMDEMEFSEAEGNTNDLVSEYQQY
MFRRKAFLHWYTGEGMDEMEF TEAESNMNDLMSEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNDLVAEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNDLVHEYQQY
MFRRKAFLHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNELVSEYQQY
MFRRKAFLHWYTLEGMEELEFTEAESNMNDLVYEYQQY
MFRRKAFLHWYTNEGMD | TEFAEAESNMNDLVSEYQQY
MFRRKAFLHWYTSEGMDEMEFTEAESNMNDLVSEYQQY
MFRRKRFLHWYTGEGMDEMEFTEAESNMNDLVSEYQQY
MFRRNAF LHWYTGEGMDEMEF TEAESNMNDLVSEYQQY
MFRRQAF LHWYTSEGMDEMEF TEAESNMNDLVSEYQQY
MFSRKAFLHWYTGEGMEEGDFAEADNNVSDLLSEYQQY

MFGKRAFVHHYVGEGMEENEFTDARQDLYELEVDYANL
MFKKRAFVHWYVGEGMEEGEFTEAREN | AVLLERDFEEV
MFVKRAFVHWYVGEGMEEGEFAEARDDLLALEKDYESV
MYAKRAFVHWYVGEGMEEGEFAEAREDLAALEKDYEEY
MYAKRAFVHWYVGEGMEEGEFSEARED | AALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDLAALEKDFEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFSEAREDMAALEKDYEEV
MYAKRAFVRWYVGEGMEEGEFSEVREDLAALEKDYEEY
MYAKRAFVHWYVGEGMEEGEFTEAREDLAALEKDYEEV
MYAKRAFVHWYVGEGMEEGEFTEAREDLAALERDY I EV
MYAKRAFVHWYVGEGMEEVEFSEAREDLAALEKDYEEY
MYAKRAFVHWYVSEGMEEGEFAEAREDLAALEKDYDEY
MYSKRAFVHWYVGEGMEEGEFSEAREDLAALEKDYEEY
MYSKRAFVHWYVGEGMEEGEFSEAREDLAALERDYEEY

b MF.K. .FVH.F..EGMQ..QFPQ...Q...... QF. ..
YR L Y N NAN N NY
w W E EGE E Ew
D DSD D D
T
C MF.KR.FLHWFT.EGMQ..QFPE...Q..DLI.DYQQY
R Y N NA N L
W E EG E M
D DS D vV
T

Figure 4.13. Aligned block of 34 tubulin proteins. (a) The sequences are divided into two groups
based on the occurrence of R or L in the fourth position and Y in the last position. (b) Specific sub-
stitution groups found in the columns of the block. If a group cannot be found, then the position is
ambiguous and a dot is printed at the position. (¢) If only the first group of sequences is used, a more
specific motif may be found because sequences in this group are more closely related to each other.
(Reprinted, with permission, from Nevill-Manning et al. 1998 [copyright National Academy of Sci-
ences].)
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block. The Gibbs sampler results may differ when the same sequences are submitted
repeatedly with a different initial alignment (see below).

The eMOTIF Method of Motif Analysis

Another somewhat different but extemely useful method of identifying motifs in protein
sequences has been described (Nevill-Manning et al. 1998). From the BLOCKS database
(derived from msa of proteins in the Prosite catalog) and the HSSP database (derived from
msa of proteins based on predicted structural similarities), a set of amino acid substitution
groups characteristic of each column in all of the alignments was found. These patterns
reflect the higher log odds scores in the amino acid substitution matrices. A statistical anal-
ysis was performed to identify amino acids that are found together in the same msa col-
umn as opposed to amino acids that are found in different columns at the 0.01 level of sig-
nificance. Thirty and 51 substitution groups that met this criterion were found in the
BLOCKS and HSSP msas, respectively. For example, the chemically aromatic group of
amino acids F, W, and Y were found to define a group often located in the same column
of the msa.

From the msa for a particular group of proteins, each column is examined to see
whether these groups are represented in the column, as illustrated in Figure 4.13. In col-
umn 1, M is always present, and because M is one group, M is used in column 1 of the
motif, as shown in part b. Similarly for column 2, Y and F, which are members of the group
FYW, are found, and hence this group is used as column 2 in the motif. The final motif
shown in b describes the variation in all the sequences. Instead, a motif may be made for
only the first group of 19 sequences, and is shown in ¢. This second motif (¢) has less vari-
ability and greater specificity for the first 19 sequences and thus would be more likely to
find those sequences in a database search (i.e., it is a more sensitive motif for those
sequences) than motif b.

The probability of each motif is estimated from the frequencies of the individual amino
acids in the SwissProt database. The probability of the motif b above is given by the
product of the probability sums in each column, or p(Motif) = p(M) X 1 X
[p(F)+p(W)+p(»)] X [p(Y)+p(R)] x. .. This value has been found to provide a good esti-
mate of false positives, or of the selectivity of the motif, in a database search. Both the sen-
sitivity and selectivity of a given motif must be taken into account in using the motif for a
database search. Ideally, a motif can find all of the sequences used to generate the motif but
none other. In practice, eMOTIF produces a large set of motifs, some more and some less
sensitive for the set of aligned sequences. The more sensitive ones, which are also the most
selective based on the value of p(Motif), are then chosen. Some are useful for specifying
subfamilies of a protein superfamily. A database of such motifs called Identify is a useful
resource for discovering the function of a gene (Nevill-Manning et al. 1998;
http://dna.stanford.edu/emotif/).

STATISTICAL METHODS FOR AIDING ALIGNMENT

Expectation Maximization Algorithm

This algorithm has been used to identify both conserved domains in unaligned proteins
and protein-binding sites in unaligned DNA sequences (Lawrence and Reilly 1990),
including sites that may include gaps (Cardon and Stormo 1992). Given are a set of
sequences that are expected to have a common sequence pattern and may not be easily rec-
ognizable by eye. An initial guess is made as to the location and size of the site of interest
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in each of the sequences, and these parts of the sequence are aligned. The alignment pro-
vides an estimate of the base or amino acid composition of each column in the site. The
EM algorithm then consists of two steps, which are repeated consecutively. In step 1, the
expectation step, the column-by-column composition of the site already available is used
to estimate the probability of finding the site at any position in each of the sequences.
These probabilities are used in turn to provide new information as to the expected base or
amino acid distribution for each column in the site. In step 2, the maximization step, the
new counts of bases or amino acids for each position in the site found in step 1 are substi-
tuted for the previous set. Step 1 is then repeated using these new counts. The cycle is
repeated until the algorithm converges on a solution and does not change with further
cycles. At that time, the best location of the site in each sequence and the best estimate of
the residue composition of each column in the site will be available.

As an example, suppose that there are 10 DNA sequences having very little similarity
with each other, each about 100 nucleotides long and thought to contain a binding site
near the middle 20 residues, based on biochemical and genetic evidence. As we will later
see when examining the EM program MEME, the size and number of binding sites, the
location in each sequence, and whether or not the site is present in each sequence do not
necessarily have to be known. For the present example, the following steps would be used
by the EM algorithm to find the most probable location of the binding sites in each of the
10 sequences.

The Initial Setup of the Algorithm

The 20-residue-long binding motif patterns in each sequence are aligned as an initial
guess of the motif. The base composition of each column in the aligned patterns is then
determined. The composition of the flanking sequence on each side of the site provides
the surrounding base or amino acid composition for comparison, as illustrated below.
For illustration purposes, each sequence is assumed to be the same length and to be
aligned by the ends, and each character in the alignment represents five sequence posi-
tions (o, not in motif; x, in motif).

00000000XXXX00000000
00000000XXXX00000000
0O0000000XXXX00000000
00000000XXXX00000000
0000000 0XXXX00000000
00000000XXXX00000000
00000000XXXX00000000
00000000OXXXX00000000 .
Columns defined
00000000OXXXX00000000 mWERIEHNILERY

00000000XXXX00000000 Rl HEURUE
sequences

| | | | provide initial
estimates of
RERRERR BEREERRER frequencies of
amino acids in
each motif

column

Columns not in motif provide
background frequencies
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The number of each base in each column is determined and then converted to
fractions. Suppose, for example, that there are four Gs in the first column of the 10
sequences, then the frequency of G in the first column of the site, fsg = 4/10 = 0.4.
This procedure is repeated for each base and each column. For the rest of the
sequences not included in the sites, the background frequency of each base is calcu-
lated. For example, let one of these four values for the background frequency, the fre-
quency of G, be fbg = 224/800 = 0.28. These values are now placed in a 5 X 20
matrix of values, the first column for the background frequencies, and the next 20
columns for the base frequencies in each successive column in the sites. Thus, the
counts in the first three columns of the matrix may appear as shown in Table 4.2.

The following calculations are performed in the expectation step of the EM algo-
rithm:

1. The above estimates provide an initial estimate of the composition of the site
and the location in each sequence. The object of this step is to improve this esti-
mate by discriminating to the greatest possible extent between sequence within
and sequence not within the site. Using the above estimates of base frequencies
for (1) background sequences that are not within the site and (2) each column
within the site, each sequence is scanned for all possible locations for the site to
find the most probable location of the site. For the 10-residue DNA sequence
example, there are 100 —20 + 1 possible starting sites for a 20-residue-long site,
the first one being at position 1 in the sequence ending at 20 and the last
beginnning at position 81 and ending at 100 (there is not enough sequence for
a 20-residue-long site beyond position 81).

Sequence 1 XXXX0000000000000000
XXXX mp
111

OXXXX000000000000000
XXXX

O0OXXXX00000000000000
XXXX

...background
frequencies in the

Use previous

estimates of amino x
acid frequencies for

each column in the

remaining positions.

motif to calculate
probability of motif in
this position, and
multiply by...

The resulting score gives the likelihood that the motif

matches positions (a) 1-20, (b) 6-25, or (c) 11-30 in sequence 1.
Repeat for all other positions and find most likely

locator. Then repeat for the remaining sequences.
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Table 4.2. Column frequencies of each base in the example given

Background Site column 1 Site column 2
G 0.27 0.4 0.1
C 0.25 0.4 0.1
A 0.25 0.2 0.1
T 0.23 0.2 0.7
1.00 1.0 1.0

The first column gives the background frequencies in the flanking sequence. Subsequent columns give
base frequencies within the site given in the above example.

For each possible site location, the probability that the site starts is just the
product of the probabilities given by Table 4.2. For example, suppose that the
site starts in column 1 and that the first two positions in sequence 1 are A and
T, respectively. The site will then end at position 20 and the first two nonsites,
flanking background sequence positions, are 21 and 22. Suppose that these
positions have an A and a T, respectively. Then the probability of this location
of the site in sequence 1 is given by Pgjce1 sequencer = 0.2 (for A in position 1)
X 0.7 (for T in position 2) X Ps for next 18 positions in site X 0.25 (for A in
first flanking position) X 0.23 (for T in second flanking position) X Ps for next
78 flanking positions. Similar probabilities for Pgites, sequencer tO Psite7s, sequencel
are then calculated, thus providing a comparative set of probabilities for the site
location. The probability of this best location in sequence 1, say at site k, is the
ratio of the site probability at k divided by the sum of all the other site proba-
bilities P(site k in sequence 1) = P k sequence 1 / (Psite 1, sequence 1 T
Piite 2, sequence1 T - - - - - + Piite 78, sequence 1)- The probability of the site location
in each sequence is then calculated in this manner.

. The above site probabilities for each sequence are then used to provide a new

table of expected values for base counts for each of the site positions using the
site probabilities as weights. For example, suppose that P (site 1 in sequence 1)
= 0.01 and that P (site 2 in sequence 1) = 0.02. In the above example, the first
base in site 1 is an A and the first base for site 2 is a T. Then 0.01 As and 0.02 Ts
are added to the accumulated list of bases at site column 1. This procedure is
repeated for every other 76 possible first columns in sequence 1. Similarly, site
column 2 in the new table of expected values is augmented by counts from the
78 possible column 2 positions in sequence 1, the first, for example, being 0.01
Ts. The weighted sequence data from the remaining sequences are also added to
the new table, resulting finally in a new estimate of the expected number of each
base at each site position and providing a new version of Table 4.2.

In this maximization step, the base frequencies found in the expectation step
are used as an updated estimate of the site residue composition. In this case, the
data are more complete than the initial estimate because all possible sites in each
of the sequences have been evaluated. The expectation and maximization steps
are repeated until the estimates of the base frequencies do not change.

An Alternative Method of Calculating Site Probabilities by the EM Algorithm

The example shown above uses the frequencies of each base in the trial alignment and
background base frequencies to calculate the probabilities of each possible location in
each sequence. An alternative method is to produce an odds scoring matrix calculated
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by dividing each base frequency by the background frequency of that base. The prob-
ability of each location is then found by multiplying the odds scores from each col-
umn. An even simpler method is to use log odds scores in the matrix. The column
scores are then simply added. In this case, the log odds scores must be converted to
odds scores before position probabilities are calculated.

Multiple EM for Motif Elicitation (MEME)

A Web resource for performing local msas by the above expectation maximization method
is the program Multiple EM for Motif Elicitation (MEME) developed at the University of
California at San Diego Supercomputing Center. The Web page for two versions of
MEME, ParaMEME, a Web program that searches for blocks by an EM algorithm
(described below), and a similar program MetaMEME (which searches for profiles using
HMMs, described below) is found at http://www.sdsc.edu/MEME/meme/website/
meme.html. The Motif Alignment and Search Tool (MAST) for searching through
databases for matches to motifs may also be found at http://www.sdsc.edu/MEME/
meme/website/mast.html.

MEME will locate one or more ungapped patterns in a single DNA or protein sequence
or in a series of DNA or protein sequences. A search is conducted for a range of possible
motif widths, and the most likely width for each profile is chosen on the basis of the log-
likelihood score after one iteration of the EM algorithm. The EM algorithm then iterates
to find the best EM estimate for that width. Three types of possible motif models may be
chosen. The OOPS model is for one expected occurrence of a motif per sequence, the
ZOOPS model is for zero or one occurrence per sequence, and the TCM model is for a
motif to appear any number of times in a sequence. These models are reflected in the
choices on the Web page (Fig. 4.14). The current version of MEME can use prior knowl-
edge about a motif being present in all or only some of the sequences, the length of the
motif and whether it is a palindrome (DNA sequences), and the expected patterns in indi-
vidual motif positions (Dirichlet mixtures, see section on HMMs, p. 189) that provide
information as to which amino acids are likely to be interchangeable in a motif (Bailey and
Elkan 1995). Once a motif has been found, the motif and its position are effectively erased
to prevent finding the same one twice. An example of the output from a ParaMEME anal-
ysis is given in Figure 4.15.

The Gibbs Sampler

Another statistical method for finding motifs in sequences is the Gibbs sampler. The
method is similar in principle to the EM method described above, but the algorithm is dif-
ferent. Like the EM method, given a set of sequences, the Gibbs sampler searches for the
statistically most probable motifs and can find the optimal width and number of these
motifs in each sequence (Lawrence et al. 1993; Liu et al. 1995; Neuwald et al. 1995). The
source code of the program code is available by anonymous FTP from
ncbi.nlm.nih.gov/pub/neuwald/gibbs9-95. A combinatorial approach of the Gibbs sam-
pler and MOTIF may be used to make blocks at the BLOCKS Web site (http://
www.blocks.therc.org/). The expected number of blocks in the search is one block for
approximately each 40 residues of sequence. The Gibbs sampler is also an option of the
msa block-alignment and editing program MACAW (Schuler et al. 1991), which runs on
MS-DOS, Macintosh, and other computer platforms and is available by anonymous FTP
from ncbi.nlm.nih.gov/pub/schuler/macaw.
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MEME -- Multiple EM for Motif Elicitation: Version 2.2

Motif discovery tool

Data Submission Form - Advanced Version YT

Your data will be processed on the Cray-T3E supercomputer at the San Diego Supercomputer Center and the results will be sent to you by e-mail.

Please enter the e-mail address where you would like your results sent:

[Optional] Please enter a brief description of your sequences.

[

Please enter the sequences which you believe share one or more motifs. The sequences may contain no more than 100,000 characters total in any of a large
number of formats. Please enter either:

1. the name of a file containing the sequences here: ]

2. or the actual sequences here:

MEME can choose the width of each motif favoring short or wide
motifs. Wide is recommended if there are fewer than 10 occurrences of

hink th f 3
gg;ed;gg? ;rendist:igﬁigg?gg;; tl?c . if Id any motif in your sequences. Choosing a number will cause all motifs
sequences? ﬂﬂv_ﬂ%{v E:hfgerent motifs would you reported to have that width. Select the width you want with the select

1xe 10 loox tor button below, or enter a width in the text window. Legal choices are

"short”, "wide" or any number from 2 to 300. (If you enter something in
the text window, it will override what is shown on the select button.)

One per sequence
@ Zero or one per sequence
{3 Any number of repetitions

Brief output format:

ADVANCED OPTIONS

Shuffle letters in input sequences:

DNA-ONLY OPTIONS

DNA palindromes: ignore allow force
complementary strand, 5' to 3' (inverse complement)

Additional strands/directions to search: main strand, 3' to §'
complementary strand, 3' to 5'

Strength of the prior (enter a positive number): m

Click here for mere information on MEME.
Return to MEME SYSTEM introduction.

You might be interested in trying other motif-making programs such as BLOCK MAKER at the Fred Hutchinson Cancer Research Center .

Please send comments and questions to: thailey@sdsc.edu .

Figure 4.14. The MEME Web page. The MEME program finds ungapped motifs (blocks) in unaligned protein or DNA sequences.
As indicated, the program can be directed to search for the size and expected number of motifs or can predict motifs based on a

statistical analysis based on the EM algorithm described in the text.




A. Summary line

MOTIF 1 width = 9 sites = 29.5

B. Letter-probability matrix

Simplified
motif letter-
probability
matrix

C. Information content of the profile

Information bits 6.2
content 56

22.0 bit
( its) 5.0

4.4

3.7

3.1 = * %
25 « *k x

1.9 * kkokkokok
1.2 *% **x*k*x**x
0.6 ** %%k %x%%*

0.0 ---=-----

D. The multilevel consensus sequence

Multilevel VDVLVNNAG
consensus L
sequence

Figure 4.15. Results produced by a MEME analysis of sequences for motifs. The output diagrams are discussed in the text.
(A) Summary line giving the number of the next motif found in order of statistical significance, width, and expected number
of occurrences in the given sequences. (B) Simplified motif letter-probability matrix showing the frequency of each amino
acid in each column of the matrix. The columns are the columns of the motif. For easier reading, the numbers shown are fre-
quencies rounded to the nearest one-tenth and multiplied by 10, and zeros are shown as colons. (C) The information content
of the profile is given in a diagram. Basically, the diagram shows the degree of amino acid variation in each column of the pro-
file: the lower the value, the greater the variation. The scale is logarithmic to the base 2 (bits). The total of all columns is also
shown. The subject of information content is discussed in greater detail below under position-specific scoring matrices. (D)
The multilevel consensus sequence shows all letters in each column of the motif that occur with a frequency of >0.2. Con-
tinued.
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E. The next motif

Motif 1 in BLOCKS format

BL MOTIF 1; width =9; seqgs =33

2BHD_STREX ( 81) VDGLVNNAG 1
3BHD_COMTE ( 81) LNVLVNNAG 1
ADH_DROME (8 VDVLINGAG 1
AP27_MOUSE ( 77) VDLLUNNAA 1
BA72_EUBSP (8 LDVMINNAG 1
BDH_HUMAN ( 138) MWGLVNNAG 1
BPHB_PSEPS (79 |IDTLIPNAG 1
BUCD_KLETE ( 80) FNVIINNAG 1
DHES_HUMAN (84 VDVLVCNAG 1
DHGB_BACME ( 87) LDVMINNAG 1
DHMA_FLAS1 ( 198) VDVIGNNTG 1
ENTA_ECOLI ( 73) LDALVNAAG 1
FIXR_BRAJA ( 112) LHALVNNAG 1
GUTD_ECOLI (82 VDLLVYSAG 1
HDE_CANTR ( 396) IDILUNNAG 1
HDHA_ECOLI (89 VDILVNNAG 1
NODG_RHIME ( 81) VDILUNNAG 1
RIDH_KLEAE (89 LDIFHANAG 1
YINL_LISMO (83 VDAIFLNAG 1
YRTP_BACSU (84 IDILINNAG 1
CSGA_MTXXA ( 13) VDVLINNAG 1
DHB2_HUMAN ( 161) LWAVINNAG 1
DHB3_HUMAN ( 125) IGILUNNVG 1
DHCA_HUMAN (83 LDVLUNNAG 1
FVT1_HUMAN ( 115) VDMLVNCAG 1
HMTR_LEIMA ( 103) CDVLVNNAS 1
MAS1_AGRRA ( 320) IDGLVNNAG 1
PCR_PEA ( 165) LDVLINNAA 1
YURA_MYXXA ( 90) LDLWANAG 1

1/

Figure 4.15. Continued. (E) Possible examples of the motif in the training set are shown. This list is based on using a posi-
tion-dependent scoring matrix (log-odds matrix) to search each sequence. The threshold score for displaying a site is chosen
such that the expected number of incorrect assignments will equal the expected number of missed but correct assignments.
Positions before and after the motif are also shown. Continued.
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F. Possible examples of motif 1 in the training set

Sequence name Start Score Site

2BHD_STREX 81 28.80 VAYAREEFGS VDGLVNNAG ISTGMFLETE
3BHD_COMTE 81 25.99 MAAVQRRLGT LNVLVNNAG ILLPGDMETG
ADH_DROME 86 22.33 LKTIFAQLKT VDVLINGAG ILDDHQIERT
AP27_MOUSE 77 24.36 TEKALGGIGP VDLLVNNAA LVIMQPFLEV
BA72_EUBSP 86 26.39 VGQVAQKYGR LDVMINNAG ITSNNVFSRV
BDH_HUMAN 138 23.46 PFEPEGPEKG MWGLVNNAG ISTFGEVEFT
BPHB_PSEPS 79 18.60 ASRCVARFGK IDTLIPNAG  IWDYSTALVD
BUDC_KLETE 80 20.97 VEQARKALGG FNVIVNNAG IAPSTPIESI
DHES_HUMAN 84 25.67 AARERVTEGR VDVLVCNAG LGLLGPLEAL
DHGB_BACME 87 26.39 VQSAIKEFGK LDVMINNAG MENPVSSHEM
DHMA_FLAS1 198 16.36 ILVNMIAPGP VDVTGNNTG YSEPRLAEQV
ENTA_ECOLI 73 21.90 CQRLLAETER LDALVNAAG ILRMGATDQL
FIXR_BRAJA 112 23.67 EVKKRLAGAP LHALVNNAG VSPKTPTGDR
GUTD_ECOLI 82 17.17 SRGVDEIFGR VDLLVYSAG |AKAAFISDF
HDE_CANTR 92 20.90 VETAVKNFGT VHVIINNAG  ILRDASMKKM
HDE_CANTR 396 29.32 IKNVIDKYGT IDILVNNAG  ILRDRSFAKN
HDHA_ECOLI 89 30.18 ADFAISKLGK VDILVNNAG GGGPKPFDMP
NODG_RHIME 81 30.18 GQRAEADLEG VDILVNNAG ITKDGLFLHM
RIDH_KLEAE 89 16.02 LQGILQLTGR LDIFHANAG AYIGGPVAEG
YINL_LISMO 83 14.65 VELAIERYGK VDAIFLNAG IMPNSPLSAL
YRTP_BACSU 84 27.41 VAQVKEQLGD IDILINNAG ISKFGGFLDL
CSGA_MYXXA 13 28.94 AFATNVCTGP VDVLINNAG VSGLWCALGD
DHB2_HUMAN 161 19.62 KVAAMLQDRG LWAVINNAG VLGFPTDGEL
DHB3_HUMAN 125 18.63 HIKEKLAGLE IGILVNNVG  MLPNLLPSHF
DHCA_HUMAN 83 30.23 RDFLRKEYGG LDVLVNNAG IAFKVADPTP
FVT1_HUMAN 115 2421 IKQAQEKLGP VDMLVNCAG MAVSGKFEDL
HMTR_LEIMA 103 24.02 VAACYTHWGR CDVLVNNAS SFYPTPLLRN
MAS1_AGRRA 320 27.93 VIAAVEKFGR IDGLVNNAG YGEPVNLDKH
PCR_PEA 165 23.97 VDNFRRSEMP LDVLINNAA  VYFPTAKEPS
YURA_MYXXA 90 18.59 IRALDAEAGG LDLVVANAG VGGTTNAKRL

Figure 4.15. Continued. (F) The next motif is given in the format used for the BLOCKS database (http://www.
blocks.fhcrc.org/blocks). The predicted locations of this motif in each sequence and the probability that the motif starts at that
location are shown. The sites reported depend on the motif search model used: (1) OOPS, the most probable location in each
sequence is given; (2) ZOOPS, the most probable location in each sequence is reported but only probabilities greater than 0.5
(a significant level for Bayesian statistics); TCM, all positions in each sequence with probabilities > 0.5 are shown. Continued.
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G. Position-specific scoring matrix

Log-odds matrix: alength = 20 w = 9 n = 9732 bayes = 8.36118

-2.725
-3.441
-0.768
-3.379
-1.373
-1.879
-2.460
-3.475
-0.693

H. Motif letter-frequency matrix

Letter-probability matrix: alength =20 w =9 n = 9732

0.032022 0.001403 0.002682 0.038055 0.003212 0.001962 0.165990 0.003143 0.322510 0.037503 0.011063
0.001268 0.841023 0.027061 0.002026 0.013178 0.012108 0.003008 0.003632 0.003860 0.001564 0.011063
0.003583 0.001915 0.003418 0.008070 0.089951 0.002520 0.190255 0.004000 0.112000 0.043590 0.011063
0.002996 0.001544 0.003098 0.026845 0.002037 0.001765 0.053213 0.003415 0.756853 0.049683 0.011063
0.004883 0.003655 0.005236 0.018977 0.017917 0.016240 0.156947 0.004942 0.019499 0.006470 0.011063
0.009211 0.011023 0.003422 0.002878 0.005871 0.012089 0.005691 0.006199 0.013606 0.002282 0.011063
0.009656 0.010865 0.003449 0.002827 0.013217 0.011467 0.005564 0.006098 0.004800 0.002240 0.011063
0.008259 0.003529 0.005378 0.004079 0.016396 0.005304 0.007937 0.005014 0.010499 0.004806 0.011063
0.001275 0.005879 0.004237 0.001291 0.878064 0.001790 0.005467 0.004450 0.002354 0.001244 0.011063

0.011063
0.006738
0.124630
0.007032
0.028238
0.019895
0.013301
0.813801
0.045249

Figure 4.15. Continued. (G) Position-specific scoring matrix. This matrix is a log-odds matrix calculated by taking the log
(base 2) of the ratio of the observed to expected counts for each amino acid in each column of the profile. Columns and rows
in the matrix correspond to the amino acids in each column and positions of the motif, respectively. The counts for each col-
umn may have additional pseudocounts added to compensate for zero occurrences of an amino acid in a column or for a
small number of sequences, as discussed below for this type of matrix. (H) Motif letter-frequency matrix is given, showing the
frequency of amino acid found in each column of the profile. Columns and rows correspond to the amino acids in each col-
umn and rows to columns in the motif, respectively. Shown also are the numbers of types of residues, the width of the motif,
and number of characters in the sequences. Only portions of the output are shown.

0.818 -5.204 -4.539 -0.082 -4.432 -3.515 1.560 -4.218 1.814 0.701 -4.126 -3.146 -3.848 .
-3.841 -4.023 -1.204 -4.313 -2.395 -0.889 -4.226 -4.009 -4.571 -3.882 -0.220 -4.682 -3.547 .
-2.342 -4.756 -4.189 -2.319 0.376 -3.154 1.757 -3.870 0.288 0.918 -3.149 -4.229 -3.492 .
-2.600 -4.331 -0.586 -5.089 -3.668 -0.081 -4.098 3.045 1.107 -4.393 -4.287 -3.383 -
-1.895 -3.823 -3.574 -1.086 -1.952 -0.466 1.480 -3.565 -2.234 -1.834 -3.701 -3.612 -3.536 -
-0.980 -2.231 -4.187 -3.807 -3.562 -0.892 -3.306 -3.238 -2.753 -3.337 4.193 -2.276 -2.750 -
-0.912 -2.2524.176  -3.833 -2.391 -0.968 -3.339 -3.262 -4.256 -3.364 4.217 -4.026 -2.768 -
-1.137 -3.874 -3.535 -3.304 -2.080 -2.080 -2.826 -3.544 -3.127 -2.263 -3.592 -4.599 -3.533 -
-3.833 -3.137 -3.879 -4.963 3.663 -3.647 -3.364 -3.716 -5.287 -4.212 -2.849 -4.518 -4.155 .

-5.066

To understand the algorithm, consider a simple example using the Gibbs sampler algo-
rithm to locate a single 20-residue-long motif in 10 sequences, each 200 residues long, as
was done above to illustrate the EM algorithm. The method iterates through two steps. In
the first step, the predictive update step, a random start position for the motif is chosen for
all sequences but for one that is chosen at random or in a specified order. So let us choose
sequence 1 as the outlier and use the other 9 to find an initial guess of the motif. These
other 9 sequences are aligned with random overlaps. The following figure illustrates how
this initial motif is located (an x equals 20 sequence positions, M indicates the random
location of the motif chosen for each sequence, and — the 20 initially aligned motif posi-
tions).

The objective is to find the most probable pattern common to all of the sequences by
sliding them back and forth until the ratio of the motif probability to the background prob-
ability is a maximum. This is accomplished by first using the initial alignment shown above
to estimate the residue frequencies in each column of the motif, and the sequence residues
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Steps of the Gibbs sampler algorithm.

A. Estimate the amino acid frequencies in the motif columns of all but

1 sequence. Also obtain background

XXXMXXXXXX XXX MXXXXXX
XXXXXXMXXX XXXXXXMXXX
XXXXXMXXXX XXXXXMXXXX
XMXXXXXXXX XMXXXXXXXX
XXXXXXXXXM XXXXXXXXXM
MXXXXXXXXX MXXXXXXXXX
XXXXMXXXXX XXXXMXXXXX
XMXXXXXXXX XMXXXXXXXX
XXXXXXXXMX XXXXXXXXMX

Random start Location of motif in each
positions chosen sequence provides first

estimate of motif composition

B. Use the estimates from A to calculate the ratio of probability of
motif to background score at each position in the left out sequence.
This ratio for each possible location in the sequence is the weight

of the position.

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
M -> M -> M -> M -> M ->

C. choose a new location for the motif in the left out sequence by a

random selection using the weights to bias the choice.

XXXXXXXMKX Estimated location of the motif in left out sequence

D. Repeat steps A to C >100 times.

that are not included in the motif to estimate the background residue frequencies. For
example, if these sequences are DNA sequences and the first column of the estimated motif
in the 10 sequences includes 3 Gs, then the value for f; coumn1 = 3/9 = 0.33. Similarly, let
ft. column2 = 1/9 = 0.11 for illustration. These frequencies are determined for each of the 20
columns in our example. Similarly, if there are 240 Gs among the 10 X 80 = 800 sequence
positions not within the estimated motif, then f; packgrouna = 240/800 = 0.30. Also let
Jt, background = 180/800 = 0.225. If the first two positions in sequence 1 are G and T in that
order, then the probability of the motif starting at position 1, Q, is calculated as 0.33 X
0.11 X ... ... X flast base, column20- Lhe background probability of this first possible motif,
Py, is also calculated as 0.30 X 0.225 X . .. .. X fiast base, background-
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Note the difference
between the Gibbs
sampler method and
the EM method, which
calculates the proba-
bility of the entire
sequence using the
motif column frequen-
cies within the motif
and the background
frequencies elsewhere.
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The ratio Q,/P; is designated as weight A; for motif position 1 in sequence 1. A;s are
then calculated for all other 100 — 20 + 1 = 81 possible locations of the 20-residue-long
motif in sequence 1. These weights are then normalized by dividing each weight by their
sum to give a probability for each motif position. From this probability distribution, a ran-
dom start position is chosen for position 1. In so doing, the chance of choosing a particu-
lar position is proportional to the weight of that position so that a higher scoring position
is more likely to be chosen. (You can think of a bag with 81 kinds of balls, with the num-
ber of each ball proportional to the weight or probability of that kind. Drawing a random
ball will favor the more prevalent ones.) This position in the left-out sequence is then used
as an estimate of the location for the motif in sequence 1. The procedure is then repeated.
Select the next sequence to be scanned, align the motifs in the other 9 sequences with
sequence 1 now using the estimated location found above, and so on. This process is
repeated until the residue frequencies in each column of the motif do not change. For dif-
ferent starting alignments, the number of iterations needed may range from several hun-
dred to several thousand.

As the above cycles are repeated, the more accurate the initial estimate of the motif in
the aligned sequences, the more accurate the pattern location in the outlier sequence. The
second step in the algorithm tends to move the sequence alignments in a direction that
favors a better score but also has a random element to search for other possible better loca-
tions. When correct start positions have been selected in several sequences by chance, the
compositions of the motif columns begin to reflect a pattern that the algorithm can search
for in the other sequences, and the method converges on the optimal motif and the prob-
ability distribution of the motif location in each sequence.

Several additional procedures are used to improve the performance of the algorithm.

1. For a correct Bayesian statistical analysis, the amino acid counts in the motif and the
background in the outlier sequence are estimated and added to the counts in the
remaining aligned sequences. This step is the equivalent of combining prior and
updated information to improve the estimation of the motif. These counts may be esti-
mated by Dirichlet mixtures (see discussion of HMMs, p. 189), which give frequencies
expected based on prior information from amino acid distributions (Liu et al. 1995).
The missing background counts for each residue b; are estimated by the formula b; =
f; x, B where B is chosen based on experience with the method as VN, the number of
sequences in the motif, and f; is the frequency of residue i in the sequences (Lawrence
et al. 1993).

2. Another feature is a procedure to prevent the algorithm from getting locked in a sub-
optimal solution. In the HMM method (see below), noise is introduced for this pur-
pose. In the Gibbs sampler, after a certain number of iterations, the current alignments
are shifted a certain number of positions to the right and left, and the scores from these
shifted positions are found. A probability distribution of these scores is then used as a
basis for choosing a new random alignment.

3. The results of a range of motif widths can be investigated. The major difficulty in
exploring motif width is to arrive at a criterion for comparing the resulting scores. One
suitable measure is to optimize the average information (see below) per free parameter
in the motif, a value that can be calculated (Lawrence et al. 1993; Liu et al. 1995). The
number of free parameters for proteins is 20 — 1 = 19, and for DNA, 4 — 1 = 3, times
the model width.

4. The method can be readily extended to search for multiple motifs in the same set of
sequences.

5. The method has been extended to seek a pattern in only a fraction of the input
sequences.
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The Gibbs sampler was used to align 30 helix-turn-helix DNA-binding domains show-
ing very little sequence similarity. The information per parameter criterion was used to
find the best motif width. Multiple motifs were found in lipocalins, a family with quite dis-
similar motif sequences separated by variable spacer regions, and also in protein iso-
prenyltransferase subunits, which have very large numbers of repeats of several kinds
(Lawrence et al. 1993). Thus, the method is widely applicable for discovering complex and
variable motifs in proteins.

Hidden Markov Models

The HMM is a statistical model that considers all possible combinations of matches, mis-
matches, and gaps to generate an alignment of a set of sequences (Fig. 4.16). A model of a
sequence family is first produced and initialized with prior information about the
sequences. A set of 20—100 sequences or more is then used as data to train the model. The
trained model may then be used to produce the most probable msa as posterior informa-
tion. Alternatively, the model may be used to search sequence databases to identify addi-
tional members of a sequence family. A different HMM is produced for each set of
sequences. HMMs have been previously used very successfully for speech recognition, and
an excellent review of the methodology is available (Rabiner 1989). In addition to their use
in producing multiple sequence alignments (Baldi et al. 1994; Krogh et al. 1994; Eddy 1995,
1996), HMMs have also been used in sequence analysis to produce an HMM that repre-
sents a sequence profile (a profile HMM), to analyze sequence composition and patterns
(Churchill 1989), to locate genes by predicting open reading frames (Chapter 8), and to
produce protein structure predictions (Chapter 9). Pfam, a database of profiles that repre-
sent protein families, is based on profile HMMs (Sonhammer et al. 1997).

HMMs often provide a msa as good as, if not better than, other methods. The approach
also has a number of other strong features: It is well grounded in probability theory, no
sequence ordering is required, insertion/deletion penalties are not needed, and experi-
mentally derived information can be used. Two disadvantages to using HMMs are that at
least 20 sequences and sometimes many more are required to accommodate the evolu-
tionary history (see Mitchison and Durbin 1995). The HMM can be used to improve an
existing heuristic alignment. The two HMM programs in common use are Sequence Align-
ment and Modeling Software System, or SAM (Krogh et al. 1994; Hughey and Krogh
1996), and HMMER (see Eddy 1998). The software is available at http://www.cse.ucsd.edu/
research/compbio/sam.html and http://hmmer.wustl.edu/. The algorithms used for pro-
ducing HMMs are extensively discussed in Durbin et al. (1998). A comparison of HMMs
with other methods is given at the end of this section.

The HMM representation of a section of multiple sequence alignment that includes
deletions and insertions was devised by Krogh et al. (1994) and is shown in Figure 4.6. This
HMM generates sequences with various combinations of matches, mismatches, insertions,
and deletions, and gives these a probability, depending on the values of the various param-
eters in the model. The object is to adjust the parameters so that the model represents the
observed variation in a group of related protein sequences. A model trained in this man-
ner will provide a statistically probable msa of the sequences.

As illustrated in Figure 4.6, the object is to calculate the best HMM for a group of
sequences by optimizing the transition probabilities between states and the amino acid
compositions of each match state in the model. The sequences do not have to be aligned
to use the method. Once a reasonable model length reflecting the expected length of the
sequence alignment is chosen, the model is adjusted incrementally to predict the
sequences. Several methods for training the model in this fashion have been described
(Baldi et al. 1994; Krogh et al. 1994; Eddy et al. 1995; Eddy 1996; Hughey and Krogh 1996;
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A. Sequence alignment
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RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN
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B. Hidden Markov model for sequence alignment

. match state ‘insert state ‘ delete state —> transition probability

Figure 4.16. Relationship between the sequence alignment and the hidden Markov model of the alignment (Krogh et al.
1994). This particular form for the HMM was chosen to represent the sequence, structural, and functional variation expect-
ed in proteins. The model accommodates the identities, mismatches, insertions, and deletions expected in a group of related
proteins. (A) A section of a multiple sequences alignment. The illustration shows the columns generated in a multiple
sequence alignment. Each column may include matches and mismatches (red positions), insertions (green positions), and
deletions (purple position). (B) The HMM. Each column in the model represents the possibility of a match, insert, or delete
in each column of the alignment in A. The HMM is a probabilistic representation of a section of a msa. Sequences can be gen-
erated from the HMM by starting at the beginning state labeled BEG and then by following any one of many pathways from
one type of sequence variation to another (states) along the state transition arrows and terminating in the ending state labeled
END. Any sequence can be generated by the model and each pathway has a probability associated with it. Each square match
state stores an amino acid distribution such that the probability of finding an amino acid depends on the frequency of that
amino acid within that match state. Each diamond-shaped insert state produces random amino acid letters for insertions
between aligned columns and each circular delete state produces a deletion in the alignment with probability 1. For example,
one of many ways of generating the sequence N K Y L T in the above profile is by the sequence
BEG - M1 - 11 - M2 - M3 - M4 - END. Each transition has an associated probability, and the sum of the probabilities of
transitions leaving each state is 1. The average value of a transition would thus be 0.33, since there are three transitions from
most states (there are only two from M4 and D4, hence the average from them is 0.5). For example, if a match state contains
a uniform distribution across the 20 amino acids, the probability of any amino acid is 0.05. Using these average values of 0.33
or 0.5 for the transition values and 0.05 for the probability of each amino acid in each state, the probability of the above
sequence N KY L T is the product of all of the transition probabilities in the path BEG - M1 - 11 -~ M2 - M3 - M4 - END,
and the probability that each state will produce the corresponding amino acid in the sequences, or 0.33 X 0.05 X 0.33 X 0.05
X 0.33 X 0.05 X 0.33 X 0.05 X 0.33 X 0.05 X 0.5 = 6.1 X 10~'°, Since these probabilities are very small numbers, amino
acid distributions and transition probabilities are converted to log odds scores, as done in other statistical methods (see pp.
176-177), and the logarithms are added to give the overall probability score. The secret of the HMM is to adjust the transi-
tion values and the distributions in each state by training the model with the sequences. The training involves finding every
possible pathway through the model that can produce the sequences, counting the number of times each transition is used

Continued.
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Durbin et al. 1998). For example, an EM algorithm from speech recognition methods
known as the Baum-Welch algorithm is used as follows:

1. The model is initialized with estimates of transition probabilities and amino acid com-
position for each match and insert date. If an initial alignment of the sequences is
known, or some other kinds of data suggest which sequence positions are the same, then
these data may be used in the model. For other cases, the initial distribution of amino
acids to be used in each state is described below. The initial transition probabilities gen-
erally favor transitions from one match state to the next rather than favoring insert and
delete states, which build more uncertainty into a sequence motif.

2. All possible paths through the model for generating each sequence in turn are exam-
ined. There are many possible such paths for each sequence. This procedure would nor-
mally require a huge amount of time computationally. Fortunately, an algorithm, the
forward-backward algorithm, reduces the number of computations to the number of
steps in the model times the total length of the training sequences. This calculation pro-
vides a probability of the sequence, given all possible paths through the model, and,
from this value, the probability of any particular path may be found. Another algo-
rithm, the Baum-Welch algorithm, then counts the number of times a particular state-
to-state transition is used and a particular amino acid is required by a particular match
state to generate the corresponding sequence position.

3. A new version of the HMM is produced that uses the results found in step 2 to gener-
ate new transition probabilities and match-insert state compositions.

4. Steps 3 and 4 are repeated up to 10 more times until the parameters do not change sig-
nificantly.

5. The trained model is used to provide the most likely path for each sequence, as
described in Figure 4.16. The algorithm used for this purpose, the Viterbi algorithm,
does not have to go through all of the possible alignments of a given sequence to the
HMM to find the most probable alignment, but instead can find the alignment by a
dynamic programming technique very much like that used for the alignment of two
sequences, discussed in Chapter 3. The collection of paths for the sequences provides a
msa of the sequences with the corresponding match, insert, and delete states for each
sequence. The columns in the msa are defined by the match states in the HMM such
that amino acids from a particular match state are placed in the same column. For
columns that do not correspond to a match state, a gap is added.

6. The HMM may be used to search a sequence database for additional sequences that
share the same sequence variation. In this case, the sum of the probabilities of all possi-
ble sequence alignments to the model is obtained. This probability is calculated by the
forward component of the forward-backward algorithm described above. This analysis

and which amino acids were required by each match and insert state to produce the sequences. This training procedure leaves
a memory of the sequences in the model. As a consequence, the model will be able to give a better prediction of the sequences.
Once the model has been adequately trained, of all the possible paths through the model that can generate the sequence
N KY LT, the most probable should be the match-insert-3 match combination (as opposed to any other combination of
matches, inserts, and deletions). Likewise, the other sequences in the alignment would also be predicted with highest proba-
bility as they appear in the alignment; i.e., the last sequence would be predicted with highest probability by the path match-
match-delete-match. In this fashion, the trained HMM provides a multiple sequence alignment, such as shown in A. For each
sequence, the objective is to infer the sequence of states in the model that generate the sequences. The generated sequence is
a Markov chain because the next state is dependent on the current one. Because the actual sequence information is hidden
within the model, the model is described as a hidden Markov model.
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gives a type of distance score of the sequence from the model, thus providing an indi-
cation of how well a new sequence fits the model and whether the sequence may be
related to the sequences used to train the model. In later derivations of HMMs, the
score was divided by the length of the sequence because it was found to be length-
dependent. A z score giving the number of standard deviations of the sequence length-
corrected score from the mean length-corrected score is therefore used (Durbin et al.
1998).

Recall that for the Bayes block aligner, the initial or prior conditions were amino acid
substitution matrices, block numbers, and alignments of the sequences. The sequences
were then used as new data to examine the model by producing scores for every possible
combination of prior conditions. By using Bayes’ rule, these data provided posterior prob-
ability distributions for all combinations of prior information. Similarly, the prior condi-
tions of the HMM are the initial values given to the transition values and amino acid com-
positions. The sequences then provide new data for improving the model. Finally, the
model provides a posterior probability distribution for the sequences and the maximum
posterior probability for each sequence represented by a particular path through the
model. This path provides the alignment of the sequence in the msa; i.e., the sequence plus
matches, inserts, and deletes, as described in Figure 4.16.

The success of the HMM method depends on having appropriate initial or prior condi-
tions, i.e., a good prior model for the sequences and a sufficient number of sequences to
train the model. The prior model should attempt to capture, for example, the expected
amino acid frequencies found in various types of structural and functional domains in pro-
teins. As the distributions are modified by adding amino acid counts from the training
sequences, new distributions should begin to reflect common patterns as one moves
through the model and along the sequences. It is important that the model reflect not only
the patterns in the training sequences, but also pattern variations that might be present in
other members of the same protein family. Otherwise, the model will only recognize the
training sequences but not other family members. Thus, some smoothing of the amino
acid frequencies is desirable, but not to the extent of suppressing highly conserved pattern
information from the training sequences. Such problems are avoided by using a method
called regularization to avoid overfitting the data to the model. Basically, the method
involves using a carefully designed amino acid distribution as the prior condition and then
modifying this distribution in a manner that uses training information in a complemen-
tary manner.

Rather than using simple amino acid composition as a prior condition for the match
states in the HMM, amino acid patterns that capture some of the important features of
protein structure and function have been used with considerable success (Sjolander et al.
1996). Other prior conditions include using Dayhoff PAM or BLOSUM amino acid sub-
stitution matrices modified by adding additional counts (pseudocounts) to smooth the
distributions (Tatusov et al. 1994; Eddy 1996; Henikoff and Henikoff 1996; Sonnhammer
et al. 1997; and see Chapter 2). Sjolander et al. (1996) have prepared particularly useful
amino acid distributions called Dirichlet mixtures to use as prior information in the match
states of the HMM. These mixtures provide amino acid compositions that have proven to
be useful for the detection of weak but significant sequence similarity. As an example, the
amino acid frequencies that are characteristic of a particular set of nine blocks in the
BLOCKS database have been determined. These blocks represent amino acid frequencies
that are favored in certain chemical environments such as aromatic, neutral, and polar
residues and are useful for detecting such environments in test sequences. The nine-com-
ponent system has been used successfully for producing an HMM for globin sequences
(Hughey and Krogh 1996). To use these frequencies as prior information, they are treated
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as possible posterior distributions that could have generated the given amino acid fre-
quencies as posterior probabilities. The probability of a particular amino acid distribution
given a known frequency distribution, i.e., 100 A, 67 G, 5 C, etc., where pA is the proba-
bility of A given by the frequency of A, pG the probability of G, etc., and # is the total num-
ber of amino acids given by the multinomial distribution

P (100A, 67G, 5C . ..) = n! pA'pG*” pC>. .../ 100! 67! 5! ... (6)

The prior distribution for the multinomial distribution is the Dirichlet distribution
(Carlin and Louis 1996), whose formulation is similar to that given in Equation 6 with a
similar set of parameters but with factorial and powers reduced by 1. The idea behind using
this particular distribution is that if additional sequence data with a related pattern are
added, then by the Bayesian procedure of multiplying prior probabilities with the likeli-
hood of the new data to obtain the posterior distribution, the probability of finding the
correct frequency of amino acids is favored statistically. Because the amino acid frequen-
cies in the test sequences could be any one of several alternatives, a prior distribution that
reflects these several choices is necessary. There is a method for weighting the prior distri-
butions expected for several different multinomial distributions into a combined frequen-
cy distribution, the Dirichlet mixture. Calculation of these mixtures is a complex mathe-
matical procedure (Sjolander et al. 1996). Dirichlet mixtures recommended for use in
aligning proteins by the HMM method have been described previously (Karplus 1995) and
are available from http://www.cse.ucsc.edu/research/compbio/. After the prior amino acid
frequencies are in place in the match states of the model, these are modified by training the
HMM with the sequences, as described in steps 2 and 3 above. For each match state in the
model, a new frequency for each amino acid is calculated by dividing the sum of all new
and prior counts for that amino acid by the new total of all amino acids. In this fashion,
the new HMM (step 4 above) reflects a combination of expected distributions averaged
over patterns in the Dirichlet mixture and patterns exhibited in the training sequences. A
similar method is used to refashion the transition probabilities in the HMM during train-
ing following manual insertion of initial values.

Another consideration in using HMMs is the number of sequences. If a good prior
model such as the above Dirichlet distribution is used, it should be possible to train the
HMM with as few as 20 sequences (SAM manual; Eddy 1996; Hughey and Krogh 1996). In
general, the smaller the sequence number, the more important the prior conditions. If the
number of sequences is >50, the initial conditions play a lesser role because the training
step is more effective. As with any msa method, the more sequence diversity, the more
challenging the task of aligning sequences with HMMs. HMMs are also more effective if
methods to inject statistical noise into the model are used during the training procedure.
As the model is refashioned to fit the sequence data, it sometimes goes into a form that
provides locally optimal instead of globally optimal alignments of the sequences. One of
several noise injection methods (Baldi et al. 1994; Krogh et al. 1994; Eddy et al. 1995; Eddy
1996; Hughey and Krogh 1996) may be used in the training procedure. One method called
simulated annealing is used by SAM (Hughey and Krogh 1996). A user-defined number of
sequences are generated from the model at each cycle and the counts so generated are
added to those from the training sequences. The noise generated in this way is reduced as
the cycle number is increased. Finally, the HMM program SAM has a built-in feature of
model surgery during training. If a match state is used by fewer than half of the sequences,
it is deleted. These same sequences then have to use an insert state in the revised model.
Similarly, if an insert state is used by more than half of the sequences, a number of addi-
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tional match states equal to the average number of insertions is added, and the model has
to be revised accordingly. These fractions may be varied in SAM to test the effect on the
type of HMM model produced (Hughey and Krogh 1996).

In trying to produce an HMM for a set of related sequences, the recommended proce-
dure is to produce several models by varying the prior conditions. Using regularization by
adding prior Dirichlet mixtures to the match states produces models that are more repre-
sentative of the protein family from which the training sequences are derived. Varying the
noise and model surgery levels is another way to vary the training procedure and the HMM
model. The best HMM model is the one that predicts a family of related sequences with the
lowest and most narrow distribution of NLL scores. An example of a portion of an HMM
trained on a set of globin sequences is shown in Figure 4.17.

Motif-based Hidden Markov Models

The program Meta-MEME uses the HMM method to find motifs (conserved sequence
domains) in a set of related protein sequences and the spacer regions between them
(Grundy et al. 1997) and is built in part on the HMM program HMMER (Eddy et al. 1995).
A similar method was originally used to analyze prokaryotic promoters with two conserved
patterns separated by a variable spacer region (Cardon and Stormo 1992). A Meta-MEME
analysis may be performed at http://www.sdsc.edu/MEME using the University of Califor-
nia at San Diego Supercomputing Center. The use of hidden Markov models for produc-
ing a global msa is described in the above section. A problem with HMMs is that the train-
ing set has to be quite large (50 or more sequences) to produce a useful model for the
sequences. For a smaller number of sequences, it is possible to obtain a model if suitable
prior data are used, and an amino acid frequency that is a mixture of frequencies charac-
teristic of certain structural domains (the Dirichlet mixture) is used as prior information
of the match states of the model. This mixture is a reasonable guess of combinations of
amino acid patterns that are likely to be found. A difficulty in training the HMM residues
is that many different parameters must be found (the amino acid distributions, the num-
ber and positions of insert and delete states, and the state transition frequencies add up to
thousands of parameters) to obtain a suitable model, and the purpose of the prior and
training data is to find a suitable estimate for all of these parameters. When trying to make
an alignment of short sequence fragments to produce a profile HMM, this problem is
worsened because the amount of data for training the model is even further reduced.

Two methods are used by Meta-MEME to circumvent this problem. First, another pat-
tern-finding algorithm, the EM algorithm (discussed on p. 173), is used to locate ungapped
regions that match in the majority of the sequences. Second, a simplified HMM with a
much reduced number of parameters is produced. The model includes a series of match
states that model the patterns located by MEME with transition probabilities of 1 between
them and a single insert state between each of these patterns, as illustrated in Figure 4.18.
As a result, fewer parameters need to be used, mostly for the amino acid frequencies in the
match states.

The most probable order and spacing of the patterns is next found. Another program
(Motif Alignment and Search Tool, or MAST; Bailey and Gribskov 1997) is used for this
purpose. MAST searches a sequence database for the patterns and reports the database
sequences that have the statistically most significant matches. The order and spacing of the
patterns found in the highest-scoring database sequences are then used by Meta-MEME as
a basis for designing the number of match and insert states and the transition probabilities
for the insert states. The match states are filled with modified Dirichlet mixtures (Baylor
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Figure 4.17. HMM trained for recognition of globin sequences. Circles in the top row are delete states that include the posi-
tion in the alignment; the diamonds in the second row are insert states showing the average length of the insertion, and the
rectangles in the bottom row show the amino acid distribution in the match states: V is common at match position 1, L at 2,
and so on. The width of each transition line joining these various states indicates the extent of use of that path in the training
procedure, and dotted lines indicate a rarely used path. The most used paths are between the match states, but about one-half
of the sequences use the delete states at model positions 56—60. Thus, for most of the sequences, the msa or profile will show
the first two columns aligned with a V followed by an L, but at 56-60, about one-half of the sequences will have a 5-amino-
acid deletion. (Reprinted, with permission, from Krogh et al. 1994 [copyright Academic Press].)

and Gribskov 1996), and the model is trained by the motif models found by MEME. For
the 4Fe-4S ferredoxins, a measure of the success of the HMM for database search, the
ROCs score (see p. 165), was approximately 0.6—0.8 for 4 to 8 training sequences, com-
pared to 0.95-0.96 using an evolutionary profile of 6 to 12 sequences. However, this fam-
ily was one of the most difficult ones to model, and other families produced an ROCs, of
0.9 or better when trained by 20 or more sequences.
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Start

Motif 1 Motif 2

Figure 4.18. The HMM used by Meta-MEME to estimate motifs in sequences. (Reprinted, with
permission of Oxford University Press, from Grundy et al. 1997.)

POSITION-SPECIFIC SCORING MATRICES

Analysis of msas for conserved blocks of sequence leads to production of the position-spe-
cific scoring matrix, or PSSM. An example of a PSSM produced by the MEME Web site is
shown in Figure 4.15G. The PSSM may be used to search a sequence to obtain the most
probable location or locations of the motif represented by the PSSM. Alternatively, the
PSSM may be used to search an entire database to identify additional sequences that also
have the same motif. Consequently, it is important to make the PSSM as representative of
the expected sites as possible. The quality and quantity of information provided by the
PSSM also varies for each column in the motif, and this variation profoundly influences
the matches found with sequences. This situation can be accurately described by informa-
tion theory, and the results can be displayed by a colored graph called a sequence logo (see
Fig. 4.19).

The PSSM is constructed by a simple logarithmic transformation of a matrix giving the
frequency of each amino acid in the motif. Two considerations arise in trying to tune the
PSSM so that it adequately represents the training sequences. First, if the number of
sequences with the found motif is large and reasonably diverse, the sequences represent a
good statistical sampling of all sequences that are ever likely to be found with that same
motif. If a given column in 20 sequences has only isoleucine, it is not very likely that a dif-
ferent amino acid will be found in other sequences with that motif because the residue is
probably important for function. In contrast, another column in the motif from the 20
sequences may have several amino acids, and some amino acids may not be represented at
all. Even more variation may be expected at that position in other sequences, although the
more abundant amino acids already found in that column would probably be favored.
Thus, if a good sampling of sequences is available, the number of sequences is sufficiently
large, and the motif structure is not too complex, it should, in principle, be possible to
obtain frequencies highly representative of the same motif in other sequences also
(Henikoff and Henikoff 1996; Sjolander et al. 1996).

However, the number of sequences for producing the motif may be small, highly diverse,
or complex, giving rise to a second level of consideration. If the data set is small, then unless
the motif has almost identical amino acids in each column, the column frequencies in the
motif may not be highly representative of all other occurrences of the motif. In such cases,
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it is desirable to improve the estimates of the amino acid frequencies by adding extra amino
acid counts, called pseudocounts, to obtain a more reasonable distribution of amino acid
frequencies in the column. Knowing how many counts to add is a difficult but fortunately
solvable problem. On the one hand, if too many pseudocounts are added in comparison to
real sequence counts, the pseudocounts will become the dominant influence in the amino
acid frequencies, and searches using the motif will not work. On the other hand, if there are
relatively few real counts, many amino acid variations may not be present because of the
small sample of sequences. The resulting matrix would then only be useful for finding the
sequences used to produce the motif. In such a case, the pseudocounts will broaden the evo-
lutionary reach of the profile to variations in other sequences. Even in this case, the pseu-
docounts should not drown out but serve to augment the influence of the real counts. In
summary, relatively few pseudocounts should be added when there is a good sampling of
sequences, and more should be added when the data are more sparse.

The goal of adding pseudocounts is to obtain an improved estimate of the probability
Pea that amino acid a is in column ¢ in all occurrences of the blocks, and not just the ones
in the present sample. The current estimate of p,, is f,, the frequency of counts in the data.
A simplified Bayesian prediction improves the estimate of p., by adding prior information
in the form of pseudocounts (Henikoff and Henikoff 1996):

pca= (nC(l+ bCﬂ)/(NC+BC) (7)

where ., and b, are the real counts and pseudocounts, respectively, of amino acid a in col-
umn ¢, N, and B, are the total number of real counts and pseudocounts, respectively, in the
column, and f.,, = 1., /N.. It is obvious that as b, becomes larger, the pseudocounts will
have a greater infuence on p,,. Furthermore, not only the types of pseudocounts but also the
total number added to the column (B,) will influence p,,. Finally, fractions such as p,, are
used to produce the log odds form of the motif matrix, the PSSM, which is the most suit-
able representation of the data for sequence comparisons. A count and probability of zero
for an amino acid a in a given column, which is quite common in blocks, may not be con-
verted to logarithms. Addition of a small number of b, will correct this problem without
producing a major change in the PSSM values. An equation similar to Equation 7 is used in
the Gibbs sampler (p. 177), except that the number of sequences is N — 1.

Pseudocounts are added based on simple formulas or on the previous variations seen in
aligned sequences. The amino acid substitution matrices, including the Dayhoff PAM and
BLOSUM matrices, provide one source of information on amino acid variation. Another
source is the Dirichlet mixtures derived as a posterior probability distribution from the
amino acid substitutions observed in the BLOCKS database (see HMMs; Sjolander et al.
1996).

One simple formula that has worked well in some studies is to make B in Equation 7
equal to VN, where N is the number of sequences, and to allot these counts to the amino
acids in proportion to their frequencies in the sequences (Lawrence et al. 1993; Tatusov et
al. 1997). As N increases, the influence of pseudocounts will decrease because VN will
increase more slowly. The main difficulties with this method are that it does not take into
account known substitutions of amino acids in alignments and the observed amino acid
variations from one column in the motif to the next, and it does not add enough pseudo-
counts when the number of sequences is small.

The information in scoring matrices may be used to produce an average sequence pro-
file, as illustrated in Figure 4.12. Rather than count amino acids, the scoring table values
are averaged between each possible 20 amino acids and those amino acids found in the col-
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umn of the scoring matrix. Zero counts in a column are not a problem because amino
acids not present are not used in the calculations. Because these averaging methods do not
take into account the number of sequences in the block, they do not have the desirable
effect of a reduced influence when there is a large number of sequences.

Another method of using the information from amino acid substitution matrices is to
base pseudocounts on these matrices. Recall the log odds form of the matrices is derived
by taking the logarithm of the frequency of substitution g;, of amino acid i for amino acid
a divided by the frequency of occurrence of amino acid a, p,,. Then, b, may be estimated
from the total number of pseudocounts in the column by (Henikoff and Henikoff 1996),

bcu = Bch Where Qi = Z'qiu (8)

b, in column ¢ can also be made to depend on the observed data in that column (Tatusov
et al. 1997), which is given by multiplying B, by the following conditional probabilities.

b.., = B, Z prob (amino acid i|column ¢) X prob (amino acid ali)

(9)

= B, Z (n /N, X Qial Qi)

where n,; is the real count of amino acid 7 in column c.

The total number of pseudocounts in each column needs also to be estimated. As
described above, one estimate is to make B, for each column equal to VN, where N is the
number of sequences, but this method does not take into account the differences between
columns and, for a small number of sequences, the total number of pseudocounts is not
sufficient. Allowing B, to be a constant that can exceed N, overcomes this limitation but
still does not take into account variations in amino acid frequencies between columns,
such that a column with conserved amino acids should receive fewer pseudocounts. Using
the number of different amino acids in column ¢, R, , as an indicator, B, has been estimat-
ed by the formula (Henikoff and Henikoff 1996)

B.=m X R, (10)

where m is a positive number derived from trial database searches and m = m X B, =< min
( m X N, m/20) (the latter term meaning the minimum of the two given values). By this
formula and a given value of m, when N, = m X 20, the total number of pseudocounts B,
is greater, and when N, > m X 20, B, is smaller than the total number of real counts, N,,
regardless of the value of R.. The number of pseudocounts is also reduced when R, =1. In
a test search of the SwissProt and Prosite catalogs with various values of m, a value of 5-6
for m produced the most efficient PSSMs for finding known family members. Of the sev-
eral methods for making PSSMs discussed above, the one with pseudocounts derived by
Equations 9 and 10 was most successful. This search was performed with PSSMs derived
from blocks with amino acid counts also weighted to account for redundancy (Henikoff
and Henikoff 1996). However, pseudocounts added from Dirichlet mixtures, which also
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vary in each column of the scoring matrix, are also very effective (Henikoff and Henikoff
1996; Tatusov et al. 1997).

Once pseudocounts have been added to real counts of amino acids in each column of
the motif, the PSSM may be calculated. The PSSM has one column (or row) for each posi-
tion in the motif and one row (or column) for each amino acid, and the entries are log
odds entries. Each entry is derived by taking the logarithm to the base 2 (bit units, but
sometimes also natural logarithms in nat units are used) of the total of the real counts plus
pseudocounts for each amino acid, divided by the probability of that amino acid (b, / N,).
An example of a PSSM produced by MEME is shown in Figure 4.15G.

As a sequence is searched with the PSSM, the value of the first amino acid in the
sequence is looked up in the first column of the PSSM, then the value of the second amino
acid in the matrix, and so on, until the length scanned is the same as the motif width rep-
resented by the matrix. All the log odds scores are added to produce a summed score for
start position 1 in the sequence. The process is repeated starting at the second position in
the sequence, and so on, until there is not enough sequence left. The highest log odds scor-
ing sequence positions have the closest match statistically to the PSSM. Adding logarithms
in this manner is the equivalent of mutiplying the probabilities of the amino acids at each
sequence position. To convert each summed log odds score (S) to a likelihood or odds
score of the sequence matching the PSSM, use the formula odds score = 2°. These odds
scores may be summed and each individual score divided by the sum to normalize them
and to thereby produce a probability of the motif at each sequence location.

The above description and example are of using a PSSM to define motifs in protein fam-
ilies. PSSM are also used to define DNA sequence patterns that define regulatory sites, such
as promoters or exon—intron junctions in genomic sequences. These topics are discussed
in Chapter 8.

Information Content of the PSSM

The usefulness of a PSSM in distinguishing real sequence patterns from background may
be measured. The unit of measure is the information content in bits. The PSSM described
above gives the log odds score for finding a particular matching amino acid in a target
sequence corresponding to each motif position. Variations in the scores found in each col-
umn of the table are an indication of the amino acid variation in the original training
sequences that were used to produce the motif. In some columns, only one amino acid may
have been present, whereas in others several may have been present. The columns with
highly conserved positions have more information than do the variable columns and will
be more definitive for locating matches in target sequences. There is a formal method
known as information theory for describing the amount of information in each column
that is useful for evaluating each PSSM. The information content of a given amino acid
substitution matrix was previously introduced (p. 83) and is discussed in greater detail
here. T. Schneider has prepared a Web site that gives excellent tutorials and a review on the
topic of information theory, along with methods to produce sequence logos (Schneider
and Stephens 1990) at http://www-lmmb.ncifcrf.gov/~toms/sequencelogo. html.

To illustrate the concepts of information and uncertainty (see above Web site), consid-
er 64 cups in a row with an object hidden under one of them. The goal is to find the object
with as few questions as possible. The solution is quite simple. First, ask whether the object
is hidden under the first or second half of the cups. If the answer is the first 32, then ask
which half of that 32, the first 16 or the second 16, and so on. The sequential questions
reduce the possibilities from 64-32-16-8-4-2-1, and six questions will therefore suffice to
locate the object. This number is also a measure of the amount of uncertainty in the data
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because this number of questions must be asked to find the object. After the first question
has been asked, uncertainty has been reduced by 1, so that only five questions then need to
be asked to find the object. The uncertainty is zero when the object is found.

A method to calculate uncertainty (the number of questions to be asked) may be derived
from the probability of finding the object under a given cup [p(object) = 1/64]. Uncer-
tainty is found by taking the negative logarithm to the base 2 of 1/64 [—log,(1/64) = 6
bits]. A situation similar to the hidden object example is found with amino acids in the
columns of a PSSM. Here, the interest is to find which amino acid belongs at a particular
column in the motif. When we have no information at all, since there are 20 possible choic-
es in all, the amount of uncertainty is log,20 = 4.32.

The data from the PSSM provide information that reduces this uncertainty. If only one
amino acid is observed in a column of the PSSM, the uncertainty is zero because there are
no other possibilities. If two amino acids are observed with equal frequency, there is still
uncertainty as to which one it is, and one question must be asked to find the answer, or
uncertainty = 1. The formula for finding the uncertainty in this example is the sum of the
fractional information provided by each amino acid, or — [0.5 X log,0.5 + 0.5 X log,0.5]
= 1. In general, the average amount of uncertainty (H,) in bits per symbol for column ¢ of
the PSSM is given by

Hc = _ZApic logz(Pic) (11)

where p;. is the frequency of amino acid i in column ¢ and is estimated by the frequency of
occurrence of each amino acid (b./N.) and log,(p;.) is the log odds score for each amino
acid in column ¢. Uncertainty for the entire PSSM may then be calculated as

H=Y H. (12)

all columns

H is also known as the entropy of the PSSM position in information theory because the
higher the value, the greater the uncertainty. The lower the value of the uncertainty H for
the PSSM, the greater the ability of the PSSM to distinguish real occurrences of the motif
from random matches. Conversely, the higher the information content, calculated as
shown below, the more useful the PSSM.

Sequence logos are graphs that illustrate the amount of information in each column of a
motif. The logo is derived from sequence information in the PSSM described above. Con-
served patterns in both protein and DNA sequences can be represented by sequence logos.
A program for producing logos, along with several examples, is available from http://www-
Immb.ncifcrf.gov/~toms/sequencelogo.html. The Web site of S.E. Brenner at
http://www.bio.cam.ac.uk/seqlogo/ will produce sequence logos from an input alignment
using the Gibbs sampler method, and an implementation of an extension of the logo
method for structural RNA alignment (Gorodkin et al. 1997) is at http://www.cbs.dtu.dk/
gorodkin/appl/plogo.html. A logo representation for the BLOCKS database has been
implemented (Henikoff et al. 1995) and may be viewed when the information on a partic-
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ular block is retrieved from the BLOCKS Web server (http://www.blocks.thcrc.org/). An
example of a Block logo is shown in Figure 4.19. Another example of a simple graph of
information content is given in Figure 4.15C. In this case, the information for the entire
motif has been calculated by the MEME server by summing the values in each column to
a total value of 22 bits. Although logos are primarily used with ungapped motifs and
sequence patterns, logos of alignments that include gaps in some sequence positions may
also be made. If such is the case, then the height of the column with gaps is reduced by the
proportion of sequence positions that are not gaps.
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Figure 4.19. A sequence logo. The logo represents the amount of information in each column of a
motif corresponding to the values in PSSM of the motif discussed above. The horizontal scale rep-
resents sequential positions in the motif. The height of each column gives the decrease in uncertainty
provided by the information in that column. The higher the column, the more useful that position
for finding matches in sequences. In each column are shown symbols of the amino acids found at
the corresponding position in the motif, with the height of the amino acid proportional to the fre-
quency of that amino acid in the column, and the amino acids shown in decreasing order of abun-
dance from the top of the column. From each logo, the following information may thus be found:
The consensus may be read across the columns as the top amino acid in each column, the relative
frequency of each amino acid in each column of the motif is given by the size of the letters in each
column, and the total height of the column provides a measure of how useful that column is for
reducing the level of uncertainty in a sequence matching experiment. Note that the highest values
are for columns with less diversity.
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The height of each logo position is calculated as the amount by which uncertainty has
been decreased by the available data; in this case, the amino acid frequencies in each col-
umn of the motif. The relative heights of each amino acid within each column are calcu-
lated by determining how much each amino acid has contributed to that decrease. The
uncertainty at column c is given by Equation 11. Because the maximum uncertainty at a
position/column when no information is available is log,20 = 4.32, as more information
about the motif is obtained by new data, the decrease in uncertainty (or increase in the
amount of information) R, is

R, =log,20 — (H, +€,) (13)

where H, is given by Equation 11 and €, is a correction factor for a small sequence num-
ber n. R, is used as the total height of the logo column. The height of amino acid a at posi-
tion ¢ in the motif logo is then given by f,. X R..

The above description applies to protein sequences. Sequence logos are also produced
for DNA sequences. The methodology is very similar to the above except that there are
only four possible choices for each logo location. Hence, the maximum amount of uncer-
tainty is log,4 = 2. The above method assumes that the sequence pattern is less random
than the background or expected sequence variation, and this assumption limits the abili-
ty of the method to locate subtle patterns in sequences.

An improved method for finding more subtle patterns in sequences is called the relative
entropy method (Durbin et al. 1998). In this case, differences between the observed
frequencies and background frequencies are used (Gorodkin et al. 1997), and the decrease
in uncertainty from background to observed (or amount of information) in bits is given by

Rc = Z piclogZ(pic/bi) (14)

where b; is the background frequency of residue 7 in the organism and the maximum
uncertainty in column c is given by —3.;1; [pi. log,(1/b;)]. When background frequencies
are taken into account, and the column frequency is less than the background frequency,
it is possible for the information given by a particular residue in a logo column to be neg-
ative. To accommodate this change, the corresponding sequence character is inverted in
the logo to indicate a less than expected frequency. There are also two ways used to illus-
trate the contribution of each character through the height of the symbol. The first method
is described above. The second method is to display symbol heights in proportion to the
ratio of the observed to the expected frequency, i.e., by the fraction (p;/b; ) / (Zan: pidb;)
for each symbol i. Gaps are included in the analysis by using p.., = 1 and, as a result, will
always give a negative contribution to the information (Gorodkin et al. 1997).

MULTIPLE SEQUENCE ALIGNMENT EDITORS AND FORMATTERS

Once a multiple sequence alignment has been obtained by the global msa program, it may
be necessary to edit the sequence manually to obtain a more reasonable or expected align-
ment. Several considerations must be kept in mind when choosing a sequence editor,
which should include as many of the following features as possible: (1) provision for dis-
playing the sequence on a color monitor with residue colors to aid in a clear visual repre-
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sentation of the alignment, (2) recognition of the multiple sequence format that was out-
put by the msa program and maintenance of the alignment in a suitable format when the
editing is completed, (3) provision of a suitable windows interface, allowing use of the
mouse to add, delete, or move sequence followed by an updated display of the alignment.
In addition, there are other types of editing that are commonly performed on msas such
as, for example, shading conserved residues in the alignment.

The large number of multiple sequence alignment formats that are in use were discussed
in Chapter 2. Two commonly encountered examples are the Genetics Computer Group’s
MSEF format and the CLUSTALW ALN format. Because these formats follow a precise out-
line, one may be readily converted to another by computer programs. READSEQ by D.G.
Gilbert at Indiana University at Bloomington is one such program. This program will run
on almost any computer platform and may be obtained by anonymous FTP from
ftp.bio.indiana.edu/molbio/readseq. There is also a Web-based interface for READSEQ
from Baylor College of Medicine at http://dot.imgen.bcm.tmc.edu:9331/seq-util/seq-
util.html/. A software package SEQIO, which provides C program modules for conversion
of sequence files from one format to another, is available by anonymous FTP from ftp.pas-
teur.fr/pub/GenSoft/unix/programming/seqio-1.2.tar.gz; documentation is available at
http://bioweb.pasteur.fr/docs/doc-gensoft/seqio/.

A short list of the many available programs that have or exceed the above-listed features
is discussed below. For a more comprehensive list, visit the catalog of software page at Web
address http://www.ebi.ac.uk/biocat/.

1. CINEMA (Colour Interactive Editor for Multiple Alignments) at http://www.biochem.
ucl.ac.uk/bsm/dbbrowser/CINEMA2.02/kit.html is a broadly functional program for
sequence editing and analysis, including dot matrix analysis. It features drag-and-drop
editing, sequence shifting to left or right, viewing of different parts of an alignment using
the split-screen option, multiple motif selection and manipulation, and a number of
added features such as viewing of protein structures. CINEMA was developed by A.-W.R.
Payne, D.J. Parry-Smith, A.D. Michie, and T.K. Attwood. CINEMA is an applet that runs
under a Web browser and therefore will run on almost any computer platform.

2. GDE (Genetic Data Environment) provides a general interface on UNIX machines for
sequence analysis, sequence alignment editing, and display (Smith et al. 1994) and is
available from several anonymous FTP sites including ftp.ebi.ac.uk/pub/software/unix.
GDE is described at http://bimas.dcrt.nih.gov/gde_sw.html, and http://www.tigr.org/
~jeisen/GDE/GDE.html. GDE features are incorporated into the Seqlab interface for
the GCG software, vers. 9. This interface requires communication with a host UNIX
machine running the Genetics Computer Group software. Interface with MS-DOS or
Macintosh is possible if the computer is equipped with the appropriate X-Windows
client software.

3. GeneDoc is an alignment editing and display editor by K. Nicholas and H. Nicholas of
the Pittsburgh Supercomputing Center for MSF-formatted msas. It can also import files
in other formats. GeneDoc can move residues by inserting or deleting gap, and features
drag-and-drop editing. As the alignment is edited, a new alignment score is calculated
by sum of pairs method or based on a phylogenetic tree. GeneDoc is available from
http://www.psc.edu/biomed/genedoc/ and runs under MS Windows.

4. MACAW is both a local multiple sequence alignment program and a sequence editing

tool (Schuler et al. 1991). Given a set of sequences, the program finds ungapped blocks
in the sequences and gives their statistical significance. Later versions of the program
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Figure 4.20. GeneDoc, a multiple sequence alignment editor with many useful features. Shown is an illustrative multiple
sequence alignment of three DNA repair genes similar to the S. cerevisiae Radl gene. The sequences were aligned with
CLUSTALW, and the FASTA-formatted alignment (Chapter 2) was imported into GeneDoc on a PC.

find blocks by one of three user-chosen methods: by searching for maximum segment
pairs or common patterns present in the sequences scored by a scoring matrix such as
PAM250 or BLOSUM matrices (the methods used by the BLAST algorithm), by using
the Gibbs sampling strategy, a statistical method, or by searching for user-provided pat-
terns provided in a particular format called a regular expression. Executable programs
that run under MS-DOS Windows, Macintosh, and other computer platforms are avail-
able by anonymous FTP from ncbi.nlm.nih.gov/pub/schuler/macaw.

Sequence Formatters

1. Boxshade is a formatting program by K. Hofmann for marking identical or similar
residues in msas with shaded boxes, and is available by anonymous FTP from
http://www.isrec.isb-sib.ch/sib-isrec/boxshade. The Web server at http://www.ch.emb-
net.org/software/BOX_form.html takes a multiple-alignment file in either the Genetics
Computer Group MSF format or CLUSTAL ALN format and can output a file in many
forms including Postscript/EPS and PICT for editing on Macintosh and MS-DOS
machines.

2. CLUSTALX is a sequence formatting tool that provides a Windows interface for a
CLUSTALW msa and is available for many computer platforms, including MS-DOS
and Macintosh machines by anonymous FTP from ftp-igbmc.u-strasbg.fr/pub/
ClustalX/ (Thompson et al. 1997).
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THE PREVIOUS TWO CHAPTERS DISCUSS the alignment of protein and nucleic acid sequences.
The methods used either align entire sequences or search for common patterns in the
sequences. In either case, the objective is to locate a set of sequence characters in the same
order in the sequences. Nucleic acid sequences that specify RNA molecules have to be com-
pared differently. Sequence variations in RNA sequences maintain base-pairing patterns
that give rise to double-stranded regions (secondary structure) in the molecule. Thus,
alignments of two sequences that specify the same RNA molecules will show covariation at
interacting base-pair positions, as illustrated in Figure 5.1. In addition to these covariable
positions, sequences of RNA-specifying genes may also have rows of similar sequence char-
acters that reflect the common ancestry of the genes.
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Figure 5.1. Complementary sequences in RNA molecules maintain RNA secondary structure.
Shown is a simple stem-and-loop structure formed by the RNA strand folding back on itself.
Molecule A depends on the presence of two complementary sequences CGA and UCG that are base-
paired in the structure. In B, two sequence changes, G —» A and C — U, which maintain the same
structure, are present. Aligning RNA sequences required locating such regions of sequence covaria-
tion that are capable of maintaining base-pairing in the corresponding structure.

INTRODUCTION

As genomic sequences of organisms become available, it is important to be able to identi-
fy the various classes of genes, including the major class of genes that encodes RNA
molecules. There are a large number of Web sites listed in Table 5.1 that provide programs

Table 5.1. RNA databases and RNA analysis Web sites

Site or resource

Web address

Reference

55 Ribosomal RNA data bank

5S rRNA database

Comparative RNA Web site

GenLang linguistic sequence
analyzer

Gobase for mitochondrial
sequences

http://rose.man.poznan.pl/5SData/
and mirrored at http://userpage.chemie.fu-berlin.
de/fb_chemie/ibc/agerdmann/5S_rRNA.html
http://www.bchs.uh.edu/~nzhou/temp/5snew.html
http://www.rna.icmb.utexas. edu/
http://www.cbil.upenn.edu/

http://alice.bch.umontreal.ca/genera/gobase/
gobase.html

Szymanski et al. (1999)

Shumyatsky and Reddy (1993)
see Web site
Dong and Searls (1994)

Korab-Laskowska et al. (1998)
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Site or resource

Web address

Reference

Intron analysis—Saccharomyces
cerevisiae

tRNA genes, higher plant
mitochondria

MFOLD minimum energy RNA
configuration

Nucleic acid database and
structure resource

Pseudobase—pseudoknot
database maintained by E. van
Batenburg, Leiden University

Ribonuclease P database Web site

Ribosomal RNA database
project (RDP II)

Ribosomal RNA mutation
databases

RiboWeb Project—3D
models of E. coli 30S
ribosomal subunit and
16s rRNA

RNA aptamer sequence database
(University of Texas)

RNA editing Web site, UCLA

RNA editing, uridine insertion/
deletion

RNA modification database

RNA secondary structures,
Group I introns, 16S rRNA,
23S rRNA

RNA structure database

RNA world at IMB Jena

rRNA-Database of ribosomal
subunit sequences

Signal recognition particle
database

Small RNA database

snoRNA database for
S. cerevisiae

tmRNA? database

tmRNA?® Web site

tRNAscan-SE search server

tRNA and tRNA gene
sequences

u RNA database

Vienna RNA package for RNA
secondary structure prediction
and comparison

Viroid and viroid-like RNA
sequences

http://www.cse.ucsc.edu/research/compbio/
yeast_introns.html
ftp://ftp.ebi.ac.uk/pub/databases/plmitrna/

http://bioinfo.math.rpi.edu/~zukerm/rna/
http://ndbserver.rutgers.edu/

http://wwwbio.leidenuniv.nl/~batenburg/pkb.html

http://jwbrown.mbio.ncsu.edu/RNaseP/
home.html
http://www.cme.msu.edu/RDP/

http://www.fandm.edu/Departments/Biology/
Databases/RNA.html

http://www-smi.stanford.edu/projects/helix/
ribo3dmodels/index.html

http://speak.icmb.utexas.edu/ellington/aptamers.html

http://www.lifesci.ucla.edu/RNA/index.html
http://www.lifesci.ucla.edu/RNA/trypanosome/

http://medlib.med.utah.edu/RNAmods/

http://www.rna.icmb.utexas.edu

http://www.rnabase.org/
http://www.imb-jena.de/RNA.html
http://rrna.uia.ac.be/

http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html

http://mbcr.bem.tme.edu/smallRNA/smallrna.html
http://rna.wustl.edu/snoRNAdb/

http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html
http://www.indiana.edu/~tmrna/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.uni-bayreuth.de/departments/
biochemie/sprinzl/trna/
http://psyche.uthct.edu/dbs/uRNADB/uRNADB.html
http://www.tbi.univie.ac.at/~ivo/RNA/

http://www.callisto.si.usherb.ca/~jpperra

Spingola et al. (1999)
Ceci et al. (1999)
Zuker et al. (1991)
Berman et al. (1998)

see Web page

Brown (1999)
Maidak et al. (1999)
Triman and Adams (1997)

Chen et al. (1997)

see Web site

Simpson et al. (1998)
Simpson et al. (1998)

Limbach et al. (1994);
Rozenski et al. (1999)

Gutell (1994); Schnare et al.
(1996 and references therein)

see Web page
Siihnel (1997)
De Rijk et al. (1992, 1999)

Samuelsson and Zwieb (2000)

see Web page
Lowe and Eddy (1999)

Wower and Zwieb (1999)
Williams (1999)

Lowe and Eddy (1997)
Sprinzl et al. (1998)

Zwieb (1997)
Hofacker et al. (1998);
Wuchty et al. (1999)

Lafontaine et al. (1999)

*tmRNA adds a carboxy-terminal peptide tag to the incomplete protein product from a broken mRNA molecule and thereby tar-

gets the protein for proteolysis.

A list of RNA Web sites and databases is available at http://bioinfo.math.rpi.edu/~zukerm/ and at http://pundit.colorado.edu:8080/.
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and guest sites for RNA analysis or for access to databases of RNA molecules and
sequences. These molecules perform a variety of important biochemical functions, includ-
ing translation; RNA splicing, processing, and editing; and cellular localization. As with
proteins, RNA-specifying genes may be identified by using the unknown gene as a query
sequence for DNA sequence similarity searches, as described in Chapter 7. If a significant
match to the sequence of an RNA molecule of known structure and function is found, then
the query molecule should have a similar role. For some small molecules, the amount of
sequence variation necessitates the use of more complex search methods, described later in
this chapter.

RNA STRUCTURE PREDICTION BASICS

A computational method for predicting the most likely regions of base-pairing in an
RNA molecule has been designed, just given the sequence, thus providing an ab initio
prediction of secondary structure. From the many possible choices of complementary
sequences that can potentially base-pair, the compatible sets that provide the most
energetically stable molecules are chosen. Structures with energies almost as stable
as the most stable one may also be produced, and regions whose predictions are the
most reliable can be identified from such an analysis. Sequence variations found in re-
lated sequences may also be used to predict which base pairs are likely to be found in
each of the molecules. One variation of RNA structure prediction methods will pre-
dict a set of sequences that are able to form a particular structure. Methods for pre-
dicting three-dimensional structures from sequence are also being developed (see
http://bioinfo.math.rpi.edu/~zuker/rna/).

Another type of RNA secondary structure prediction method takes into account con-
served patterns of base-pairing that are conserved during evolution of a given class of RNA
molecules. Sequence positions that base-pair are found to vary at the same time during
evolution of RNA molecules so that structural integrity is maintained. For example, if two
positions G and C form a base pair in a given type of molecule, then sequences that have
C and G reversed, or A and U or U and A at the corresponding positions, would be con-
sidered reasonable matches. These patterns of covariation in RNA molecules are a mani-
festation of secondary structure that lead to a structural prediction. The computational
challenge is to discover these covariable positions against the background of other
sequence changes.

FEATURES OF RNA SECONDARY STRUCTURE

Like protein secondary structure, RNA secondary structure can be conveniently viewed as
an intermediate step in the formation of a three-dimensional structure. RNA secondary
structure is composed primarily of double-stranded RNA regions formed by folding the
single-stranded molecule back on itself. To produce such double-stranded regions, a run
of bases downstream in the RNA sequence must be complementary to another upstream
run so that Watson—Crick base-pairing between the complementary nucleotides G/C and
A/U (analogous to the G/C and A/T base pairs in DNA) can occur. In addition, however,
G/U wobble pairs may be produced in these double-stranded regions. As in DNA, the G/C
base pairs contribute the greatest energetic stability to the molecule, with A/U base pairs
contributing less stability than G/C, and G/U wobble base pairs contributing the least.
From the RNA structures that have been solved, these base pairs and a number of addi-
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A. Single-stranded RNA B. Double-stranded RNA helix of
stacked base pairs
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Figure 5.2. Types of single- and double-stranded regions in RNA secondary structures. Single-
stranded RNA molecules fold back on themselves and produce double-stranded helices where com-
plementary sequences are present. A particular base may either not be paired, as in A, or paired with
another base, as in B. The double-stranded regions will most likely form where a series of bases in
the sequence can pair with a complementary set elsewhere in the sequence. The stacking energy of
the base pairs provides increased energetic stability. Combinations of double-stranded and single-
stranded regions produce the types of structures shown in C-F, with the single-stranded regions
destabilizing neighboring double-stranded regions. The loop of the stem and loop in C must gener-
ally be at least four bases long to avoid steric hindrance with base-pairing in the stem part of the
structure. The stem and loop reverses the chemical direction of the RNA molecule. Interior loops,
as in D, form when the bases in a double-stranded region cannot form base pairs, and may be asym-
metric with a different number of base pairs on each side of the loop, as shown in E, or symmetric
with the same number on each side. Junctions, as in F, may include two or more double-stranded
regions converging to form a closed structure. The RNA backbone is red, and both unpaired and
paired bases are blue. The types of loop structures can be represented mathematically, thereby
aiding in the prediction of secondary structure (Sankoff et al. 1983; Zuker and Sankoff 1984).
(Adapted from Burkhard et al. 1999b.)

tional ones (see Burkhard et al. 1999a,b) have been identified. RNA structure predictions
comprise base-paired and non-base-paired regions in various types of loop and junction
arrangements, as shown in Figure 5.2.

In addition to secondary structural interactions in RNA, there are also tertiary interac-
tions, illustrated by the examples in Figure 5.3. These kinds of structures are not pre-
dictable by secondary structure prediction programs. They can be found by careful covari-
ance analysis.
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Figure 5.3. Examples of known interactions of RNA secondary structural elements. (A) Pseudo-
knot. (B) Kissing hairpins. (C) Hairpin-bulge contact. (Adapted from Burkhard et al. 1999b.)

LIMITATIONS OF PREDICTION

In predicting RNA secondary structure, some simplifying assumptions are usually made.
First, the most likely structure is similar to the energetically most stable structure. Second,
the energy associated with any position in the structure is only influenced by local sequence
and structure. Thus, the energy associated with a particular base pair in a double-stranded
region is assumed to be influenced only by the previous base pair and not by the base pairs
farther down the double-stranded region or anywhere else in the structure. These energies
can be reliably estimated by experimentation with small, synthetic RNA oligonucleotides
(Tinoco et al. 1971, 1973; Freier et al. 1986; Turner and Sugimoto 1988; SantaLucia 1998)
recently improved to include sequence dependence (Mathews et al. 1999). They are most
reliable when used for standard Watson—Crick base pairs and single G-U pairs surrounded

upper J
seclion

B2 Bn-2
B, Bn.
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B
B, B, B Bn_‘Bn~2

Figure 5.4. Display of base pairs in an RNA secondary structure by a circle plot. The predicted min-
imum free-energy structure shown in B is represented by a plot of the predicted base pairs as arcs
connecting the bases in the sequence, which is drawn around the circumference of a circle, as shown
in A (see Nussinov and Jacobson 1980). Note that none of the lines cross, a representation that the
structure does not include any knots. (Reprinted from Nussinov and Jacobson 1980.)
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by Watson—Crick pairs. Finally, the structure is assumed to be formed by folding of the
chain back on itself in a manner that does not produce any knots. The best way of repre-
senting this requirement is to draw the sequence in a circular form. The paired bases are
then joined by arcs. If the total structure with all predicted base pairs is to be free of knots,
none of the arcs must cross (Fig. 5.4). Note, however, that if a pseudoknot (Fig. 5.3) is rep-
resented on such a diagram, the lines will cross.

DEVELOPMENT OF RNA PREDICTION METHODS

In the Monte Carlo
method, a random
drawing is made from
a pool of all possible
double-stranded
regions, with the num-
ber of each type
weighted in propor-
tion to energetic sta-
bility.

The development of methods for predicting RNA secondary structure has been reviewed
by von Heijne (1987). Tinoco et al. (1971) first estimated the energy associated with
regions of secondary structure by extrapolation from studies with small molecules and
then attempted to predict which configurations of larger molecules were the most ener-
getically stable. Energy estimates included the stabilizing energy associated with stacking
base pairs in a double-stranded region and the destabilizing influence of regions that were
not paired. Pipas and McMahon (1975) developed computer programs that listed all pos-
sible helical regions in tRNA sequences; using modified Watson—Crick base-pairing rules,
they created all possible secondary structures by forming permutations of compatible heli-
cal regions, and evaluated each possible structure for total free energy. Studnicka et al.
(1978) designed a method for adding compatible double-stranded regions together to pro-
duce the energetically most favorable structure. Martinez (1984) made a list of possible
double-stranded regions, and these regions were then given weights in proportion to their
equilibrium constants, calculated by the Boltzmann function [ exp (—AG/RT) ], where
—AG is the free energy of the regions, R is the gas constant, and T is the temperature. The
RNA molecule is folded by a Monte Carlo method in which one initial region is chosen at
random from a weighted pool, similar to the method used in Gibbs sampling (see p. 177).

Imagine each possible double-stranded region being represented by a marble in a bag.
The number of each type of marble is weighted by the Boltzmann probability so that mar-
bles corresponding to more energetically stable regions are more likely to be chosen. Addi-
tional compatible regions are then added sequentially by further selections from the
weighted pool until no more can be added. This method generates a set of possible struc-
tures weighted by energy, but it does not take into account the destabilizing effect of
unpaired regions. The Boltzmann probability function is used in more recent applications
(described below) to find the most probable secondary structures (Hofacker et al. 1998;
Wuchty et al. 1999).

Nussinov and Jacobson (1980) were the first to design a precise and efficient algorithm
for predicting secondary structure. The algorithm generates two scoring matrices—one
M(i,7) to keep track of the maximum number of base pairs that can be formed in any inter-
val i to j in the sequence and a second K(i,j) to keep track of the base position k that is
paired with j. From these matrices, a structure with the maximum possible number of base
pairs could be deduced by a trace-back procedure similar to that used in performing
sequence alignments by dynamic programming. Zuker and Stiegler (1981) used the
dynamic programming algorithm and energy rules for producing the most energetically
favorable structure. Their method assumes that the most energetic, and usually longest,
predicted dsRNA regions are present in the molecule. Because many double-stranded
regions are predictable for most RNA sequences, the number of predictions is reduced by
including known biochemical or structural information to indicate which bases should be
paired or not paired, by enforcing topological restraints and by requiring that the structure
be in an energetically stable configuration.
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MFOLD, written by Dr. Michael Zuker and colleagues, is commonly used to predict the
energetically most stable structures of an RNA molecule (Jaeger et al. 1989, 1990; Zuker
1989, 1994). MFOLD provides a set of possible structures within a given energy range and
provides an indication of their reliability. The program also uses covariance information
from phylogenetically related sequences (Zuker et al. 1991). MFOLD includes methods for
graphic display of the predicted molecules. This program is one of the most demanding on
computer resources that is currently used because the algorithm is of N° complexity, where
N is the sequence length. For each doubling of sequence length, the time taken to compute
a structure increases eightfold. The program also requires a large amount of memory for
storing intermediate calculations of structure energies in multiple scoring matrices. As a
result, MFOLD is most often used to predict the structure of sequences less than 1000
nucleotides in length. This method is most reliable for small molecules and becomes less
reliable as the length of the molecule increases.

MFOLD and many other types of useful information on RNA are found at the Web site
of Dr. Michael Zuker, at http://bioinfo.math.rpi.edu/~zuker/rna/. Details of running
MFOLD are not given here because the user manual for MFOLD is widely available (Jaeger
et al. 1990). Recently, a new method called the partition function method for finding the
most probable secondary structural configuration of an RNA molecule and the most prob-
able base pairs has been reported by the Vienna RNA group (Wuchty et al. 1999) and is
discussed below (p. 219).

One advance in the prediction of RNA structure has come from the recognition that
certain RNA sequences form specific structures and that the presence of these sequences is
strongly predictive of such a structure. For example, the hairpin CUUCGG occurs in dif-
ferent genetic contexts and forms a very stable structure (Tuerk et al. 1988). Databases of
such RNA structures and RNA sequences can greatly assist in RNA structure prediction
(Table 5.1).

The genetic algorithm (see Chapter 4, p. 157) has also been used to predict secondary
structure (Shapiro and Navetta 1994); for aligning RNA sequences, taking into account both
sequence and secondary structure and including pseudoknots (Notredame et al. 1997); and
for simulation of RNA-folding pathways (Gultyaev et al. 1995). The program FOLDALIGN
uses a dynamic programming algorithm to align RNAs based on sequence and secondary
structure and locates the most significant motifs (Gorodkin et al. 1997). Chan et al. (1991)
have described another algorithm for the same purpose, and Chetouani et al. (1997) have
developed ESSA, a method for viewing and analyzing RNA secondary structure.

METHODS

SELF-COMPLEMENTARY REGIONS IN RNA SEQUENCES PREDICT SECONDARY

STRUCTURE

One of the simplest types of analyses that can be performed to find stretches of sequence
in RNA that are self-complementary is a dot matrix sequence comparison for self-comple-
mentary regions. For single-stranded RNA molecules, these repeats represent regions that
can potentially self-hybridize to form RNA double strands (von Heijne 1987; Rice et al.
1991). All types of RNA secondary structure analysis begin by the identification of these
regions, and, once identified, the compatible regions may be used to predict a minimum
free-energy structure. A more advanced type of dot matrix can be used to show the most
energetic parts of the molecule (see Fig. 5.8, below).
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Figure 5.5. Dot matrix analysis of the potato tuber spindle viroid for RNA secondary structure
using the MATRIX function of DNA Strider v. 1.2 on a Macintosh computer.

Self-complementary regions in RNA may be found by performing a dot matrix analysis
with the sequence to be analyzed listed in both the horizontal and vertical axes. In one
method for finding such regions, the sequence is listed in the 5’ — 3’ direction across the
top of the page and the sequence of the complementary strand is listed down the side of
the page, also in the 5" — 3’ direction. The matrix is then scored for identities. Self-com-
plementary regions appear as rows of dots going from upper left to lower right. For RNA,
these regions represent sequences that can potentially form A/U and G/C base pairs. G/U
base pairs will not usually be included in this simple type of analysis. As with matching
DNA sequences, there are many random matches between the four bases in RNA, and the
diagonals are difficult to visualize. A long window and a requirement for a large number
of matches within this window are used to filter out these random matches.

An example of the RNA secondary structure analysis using a DNA matrix option of
DNA Strider is shown in Figure 5.5. An analysis of the potato spindle tuber viroid is shown,
using a window of 15 and a required match of 11. Note the appearance of a diagonal run-
ning from the center of the matrix to the upper left, and a mirror image of this diagonal
running to the lower right. The presence of this diagonal indicates the occurrence of a large
self-complementary sequence such that the entire molecule can potentially fold into a hair-
pin structure. An alternative dot matrix method for finding RNA secondary structure is to
list the given RNA sequence across the top of the page and also down the side of the page
and then to score matches of complementary bases (G/C, A/U, and G /U). Diagonals indi-
cating complementary regions will go from upper right to lower left in this type of matrix.
This is the kind of matrix used to produce an energy matrix (see Fig. 5.8, below).
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MINIMUM FREE-ENERGY METHOD FOR RNA SECONDARY STRUCTURE

PREDICTION

To predict RNA secondary structure, every base is first compared to every other base by a
type of analysis very similar to the dot matrix analysis. The sequence is listed across the top
and down the side of the page, and G/C, A/U, and G/U base pairs are scored (for an exam-
ple using a dot matrix method to find hairpins, see Fig. 5.5). Just as a diagonal in a two-
sequence comparison indicates a range of sequence similarity, a row of matches in the RNA
matrix indicates a succession of complementary nucleotides that can potentially form a
double-stranded region. The energy of each predicted structure is estimated by the near-
est-neighbor rule by summing the negative base-stacking energies for each pair of bases in
double-stranded regions and by adding the estimated positive energies of destabilizing
regions such as loops at the end of hairpins, bulges within hairpins, internal bulges, and
other unpaired regions. Representative examples of the energy values that are currently
used are given in Table 5.2. To evaluate all the different possible configurations and to find
the most energetically favorable, several types of scoring matrices are used. The comple-
mentary regions are evaluated by a dynamic programming algorithm to predict the most
energetically stable molecule. The method is similar to the dynamic programming method
used for sequence alignment (see Chapter 3).

To calculate the stacking energy of a row of base pairs in the molecule, the stacking ener-
gies similar to those shown in Table 5.2 are used. An